
Technische Universität München

Fakultät für Informatik

Bachelorarbeit in Informatik

Analysis and detection of

virtualization-based rootkits

Hagen Fritsch

Technische Universität München

Fakultät für Informatik

Bachelorarbeit in Informatik

Analysis and detection of

virtualization-based rootkits

Analyse und Erkennung von

virtualsierungsbasierten Rootkits

Bearbeiter: Hagen Fritsch

Supervisor: Prof. Dr. Heinz-Gerd Hegering

Advisors: Tobias Lindinger
Nils gentschen Felde

Submission Date: 27. August 2008

Abstract

With the emergence of hardware virtualization, it was discussed if this technology gives
ground for a potentially undetectable form of malware. While several claims have been
made, this thesis presents this malware technology’s state of the art, describes possible
detection methods and demystifies the topic referencing the current literature, analyzing
a sample implementation and validating results on a special testing machine. Though the
100% undetectability claim does not hold due to a variety of attack vectors that have been
presented over the last two years, such malware raises the bar for detection, especially since
real code detection requires ways to get raw memory access which is only possible by getting
even closer to the hardware. With this thesis, a testing framework for detection using side-
channel attacks is presented implementing some of the proposed detection methods.

Contents

1 Introduction 1

2 Prerequisites 3
2.1 A rootkit taxonomy . 3

2.1.1 Type 0 malware . 3
2.1.2 Type 1 malware . 3
2.1.3 Type 2 malware . 5
2.1.4 Type 3 malware . 6

2.2 Mass rootkits vs. targeted attacks . 6

3 HVM rootkits 9
3.1 Basic Principles . 9

3.1.1 Implementing a thin hypervisor . 10
3.1.2 Abusing hardware virtualization for malware 10

3.2 Technical Implementation Details . 10
3.2.1 Moving the operating system into the virtual machine 11
3.2.2 Further hypervisor tasks . 12
3.2.3 Details on Bluepill . 13

4 On detecting HVM rootkits 15
4.1 Virtualization detection . 15

4.1.1 Timing Attacks . 15
4.1.2 CPU-specific behaviour . 17
4.1.3 Profiling CPU resource discrepancies 18
4.1.4 Counter-based detection . 21
4.1.5 Side Channel Attacks with nested virtualization 21

4.2 Explicitly detecting a malicious hypervisor . 23
4.2.1 Signature Detection . 23
4.2.2 Hardware-based memory acquisitions 24
4.2.3 “Insane Detection of Insane Rootkits” 25

4.3 Passive detection . 25
4.4 Removal of a malicous hypervisor . 25

5 On preventing HVM rootkits 27
5.1 Hardware supported authorization . 27

5.1.1 BIOS support . 27
5.1.2 Unlockable virtualization . 27
5.1.3 TPM support . 27

5.2 Installing a trusted hypervisor first . 28

iii

Contents

6 Conclusions and Prospective 29
6.1 Threat-Evaluation . 29
6.2 Undetectable Stealth Rootkits . 30
6.3 Applications for thin hypervisors . 30
6.4 Further tasks / research . 30

A Empirical Results 33
A.1 Preparing Windows for home-brew drivers . 33
A.2 Running Bluepill . 34

A.2.1 Verifying Bluepill’s presence in a debug environment 35
A.3 Own Developments . 36

A.3.1 Implementation of the counter-based detection 36
A.3.2 Implementation of TLB-based detection 36

A.4 Empirical results . 38

List of Figures 41

Bibliography 43

iv

1 Introduction

The current development of virtualization technology attracts a lot of attention and offers
some great opportunities for the IT-industry. However, recent developments proved that
this new kind of technology can be abused by malware that might turn out to be completely
undetectable by antivirus software. Focusing on desktop system (although this is true for
many servers as well) a clear domination of x86 processors can be seen. Nowadays, every
newer x86 processor supports hardware virtualization and therefore virtualization malware
becomes a serious risk. Evaluating the threat and developing possible counter-measures is
therefore an absolute necessity for current and future computers’ security. The question of
the possibility of a perfect undetectable stealth rootkit, which did not exist in such a form
prior to the availability of virtualization technology, is of additional academic interest.

Structure

Chapter 2 will give a short introduction into basic rootkit ideas, their goals and their short-
comings, followed by a description and analysis of hardware-assisted virtual machine (HVM)
rootkits in general and the proof-of-concept rootkit Bluepill in special in chapter 3. Possible
and impossible means of detecting such rootkits will be presented in chapter 4, while chapter
5 focuses on how to prevent such a rootkit’s installation.

In appendix A, the necessary steps to be able to run Bluepill are described as well as the
implementation of the hardware-virtualization detector that has been implemented within
this thesis. Results gained by the detection methods analysed will be evaluated.

A good-founded pre-knowledge especially concerning system programming and virtualization-
technology is required for the understanding of this thesis.

1

1 Introduction

2

2 Prerequisites

This chapter is going to introduce basic rootkit concepts by classifying several types of mal-
ware, their techniques and their aims while illustrating them with well-known examples. The
circle of these prerequisites is closed by pointing attention to the issue of targeted attacks,
which will be of relevance on several occasions in the following chapters.

A rootkit is malware taking control over a computer system without proper authorization,
usually installed after getting access to the target system and meant to preserve this access.
This is accomplished by installing a backdoor allowing the attacker to reenter the system at
a later time. A key feature is therefore the undetectability of such a backdoor.

Several basic techniques for “stealth” rootkits have been developed. However, as this
chapter is going to point out, there are means for detecting each of those.

2.1 A rootkit taxonomy

[Rut06] presented a rootkit taxonomy for classifying the different types of rootkits from a
“system compromise detection point-of-view”.

Generally speaking, a rootkit has to place a hook somewhere, so that at some point an
application or the operating system would redirect control to code that is owned by the
rootkit. In a modern operating system there are many places to hook. However, there are
different types of hooks that can be generalized, serving as a classification for such malware.

2.1.1 Type 0 malware

Type-0-Malware comes with its own files or modifies existing files. The detection of such
malware can easily be done through signature scans and integrity checks. Such methods
are widely used and implemented for example in anti-virus software (signature scanning)
or in Tripwire (integrity checking). Probably the most famous example of such malware is
Thompson’s compiler hack [Tho84] that compiled malicious code into executables and would
also compile this malicious code into the compiler when the compiler was build. Therefore
even if a whole system was build from the bare sources, the compiler would still have installed
the backdoor.

Also the most widely spread user-mode rootkits belong to this category. They would
traditionally replace essential system binaries with their own versions presenting a false view
to system administrators in order to hide the presence of processes, files and other data
allowing for the detection of the rootkit.

2.1.2 Type 1 malware

Type-1-Malware modifies read-only i.e. constant data like code or static values in executables
or kernel data (see figure 2.1). This is done by modifying code-sections and directly replacing

3

2 Prerequisites

Malware

Malware

Malware

Code
Data

CPU "System" Register

Code

Data

Code

Data

Process 1 Process 2

Kernel

Figure 2.1: Type 1 malware [Rut06]

code (a technique known as Inline Function Hooking) or by modifying structures such as the
import section of a binary (Import Address Table (IAT) Hooking). Using these techniques
the control flow will be redirected to the malicious code. The equivalent of hooking the
IAT in kernel mode would be to hook the System Service Descriptor Table (SSDT) which
is a look-up table for all implemented, user-mode callable system functions. This influences
every application. A typical rootkit would use these techniques to filter system API calls in
order to hide for example a file, a process or a network-socket. A user-mode program would
(assuming the rootkit is properly implemented) not be able to ever know about the rootkit’s
presence.

Integrity scans based on signed executables and hashes of code and static data could
provide a wonderful way of verifying the program’s state. However several more or less le-
gitimate usages of run-time code modification prevent its application right now. Windows
Kernel Patch Protection (PatchGuard [Mic]) tries to implement detection and locates mod-
ifications in the kernel space through integrity verification, but can be disabled with some
effort by malicious software as shown by [MJ05] and again by [Joh06] after Microsoft tried
to “harden” the protection. User-mode detection approaches try to get a low-level view of
the system. If the rootkit is trying to hide a file, a detector would try to get raw disk access
and parse the file system structures on its own without using the system’s API.

One of the most popular hooking rootkits is Hacker Defender (http://www.rootkit.
com/project.php?id=5) hiding files, directories, processes, services, ports et cetera. It is
mainly a user-mode rootkit coming with some assistant code that runs in the kernel. The
rootkit is well-known and its signature is included in standard antivirus software. Separate
detectors and removal tools are available as well.

4

http://www.rootkit.com/project.php?id=5
http://www.rootkit.com/project.php?id=5

2.1 A rootkit taxonomy

Malware

Malware

Malware

Code
Data

CPU "System" Register

Code

Data

Code

Data

Process 1 Process 2

Kernel

Figure 2.2: Type 2 malware [Rut06]

2.1.3 Type 2 malware

The flaw of type 1 malware is that it modifies constant data, i.e. data that is not supposed
to be changed and thus the detection is straightforward. Consequently type 2 malware will
only modify application’s data that is supposed to change such as variables in memory (see
figure 2.2). Such malware would modify certain in-memory data structures. If this technique
is applied on the operating system’s kernel, it is known as Direct Kernel Object Modification
(DKOM). Since these data structures are often designed to be modified for legitimate uses
within the operating system, a signature verification approach cannot be used to detect the
unwanted modifications. However, known rootkits can still be found, since a detector would
know where to look for which modifications. Also, a whole-system memory integrity scanner
that knows about all data-structures that can be used for dynamic hooking, would need
verify all those places and would then be able to detect the presence of such a rootkit. This
is a rather theoretical assumption though, since such a scanner does not exist. However,
imagining that operating systems would mark all those hooking places and produce such a
tool, this would be a bad day for all type 2 malware.

The just mentioned detection works well unless the rootkit is able to prevent the scanner
from scanning certain memory pages, which is exactly what the famous proof-of-concept
rootkit Shadow Walker [SB05] does to achieve stealth. By installing a custom page fault
handler and marking its own pages as non-present, it can allow execution access to the
hidden page, but will provide a dummy page once read access is request. Unfortunately for
the rootkit, this technique won’t work for the page of the page fault handler itself and thus
a modified page fault handler would be easily detectable and provide indication for malware
presence on the system.

5

2 Prerequisites

2.1.4 Type 3 malware

Malware

Code
Data

CPU "System" Register

Code

Data

Code

Data

Process 1 Process 2

Kernel

Figure 2.3: Type 3 malware [Rut06]

The logical consequence of type 1 and type 2 malware is to introduce type 3 malware which
does not modify any CPU registers nor read-only nor modifiable data in the operating system
(see figure 2.3). This would be the perfect malware as it seems that this kind of malware
is undetectable. An example for such malware is virtualization based malware in all its
forms. The next chapter is going to dive into hardware-virtualization based malware (HVM
rootkits) such as Bluepill.

2.2 Mass rootkits vs. targeted attacks

Traditionally malware tried to reach as far as possible, infecting as many machines as pos-
sible. In recent years the primary motivations for malware were building bot nets for spam-
ming or stealing personal information like credit card numbers or passwords for online games.
These mass rootkits have the advantage, that antivirus vendors have easy access to samples
of it which they can use to analyze and build signatures for detection and removal.

A very different aim have targeted attacks. Rather than trying to infect as many systems
as possible, they target just a couple of machines. Sometimes there is even only one ex-
isting copy of the rootkit. Targeted malware therefore aims to spy for specific information
on a very selected set of systems. They can be adjusted to bypass signature detection or
can disable antivirus systems prior to launching their malicious routine. Antivirus vendors
can usually not acquire samples of such malware, because the malware will not enter their
honeypot systems. Also these attacks are seldom even noticed by users who could forward
a sample of the rootkit to the antivirus vendor.

6

2.2 Mass rootkits vs. targeted attacks

Because operating systems and antivirus vendors generally verify the system’s integrity by
enumerating badness using signature scanning instead of ensuring goodness, targeted rootkits
cannot easily be detected as long as their signature is unknown. As section 2.1.3 already
concluded for type 2 malware, it is theoretically possible to protect even against targeted
attacks. The arising question is therefore if type 3 malware is really undetectable or if it is
possible to protect against mass rootkits or even against targeted attacks.

7

2 Prerequisites

8

3 HVM rootkits

Hypervisors run in an even more privileged mode than kernel-mode drivers that are running
in ring 0 (while user-mode applications usually run in ring 0). This privileged mode for
hypervisors is sometimes refered to as ring -1 and it allows for defining anything that would
give clues about the rootkit’s presence to be a more privileged instruction and thus makes
it possible for the hypervisor to even trap ring 0 operations. This means it can theoretically
intercept and cheat every aspect of guest operation.

3.1 Basic Principles

HVM rootkits are thin hypervisors making use of hardware-virtualization features of the
CPU (i.e. AMD-V and Intel VT-x) and are therefore not flawed by the shortcomings software-
based virtual machines have to deal with. Software-based virtualization does not allow for
full virtualization, meaning that certain unprivileged instructions such as SIDT or SGDT
(Store Global/Interrupt Descriptor Table Register) can be executed within the guest with-
out the host being able to trap and emulate the execution thus allowing for straightforward
virtualization-detection as described by [QS06, Rut04a, Kle]. In contrast to widely spread

hardware

vmm

guestA guest B

hardware hardware

vmmnative OS

vmware
idealized
rootkit thin hypervisor

hyperjacker /

native OS

vmm

Figure 3.1: Differences between traditional and thin hypervisors (based upon [PLF07])

hypervisors such as VirtualBox or VMWare, a thin hypervisor (or a hyperjacker as [PLF07]
calls it to distinguish from the traditional concept of a hypervisor, see figure 3.1) does not
emulate a whole different hardware environment for the guest providing a strict isolation.
There have however been some approaches in this direction, such as Microsoft’s SubVirt
[KWC+06] which is a persistent rootkit booting the guest operating system within a com-
mercial hypervisor. But due to the absolute easiness of detecting such malware, this thesis is
going to concentrate here solely on thin HVM rootkits which contrary to SubVirt’s approach
allow the guest to directly access nearly all aspects of the original hardware, most of the
time without the hypervisor even trapping the access. This means the hypervisor and the

9

3 HVM rootkits

guest operating system share all except for very few resources and the performance impact
of such hardware virtualization is not noticeable.

Hypervisor rootkits are non-permanent. They only reside within the computer’s memory,
thus uninstallation is as easy as rebooting the PC (another mean of disabling hypervisors is
presented in section 4.4). The rootkit could possibly use other known techniques to become
permanent. These features however remove stealth, as they have to place hooks for example
in the filesystem again, and are consequently type 1 malware at best.

3.1.1 Implementing a thin hypervisor

The environment in which the virtual machine runs is defined by a control-structure specific
to the virtualization extensions of the CPU. In this structure are among other information
all registers that define the operations of the CPU. These are for example segment registers,
the CR3 register (holding the base address of the page directory and being used for virtual
memory) or the instruction pointer. General purpose and floating point registers are not
included. The thin hypervisor would now clone all of the CPU’s state information and put it
in the virtual machine control structure/block (Intel: VMCS, AMD: VMCB). The operating
system will be running outside the virtual machine at first, but when executing inside the
virtual machine, the very exact same environment will be available to the operating system
and as such it will work as it did before, until it executes an instruction that has to be
trapped and handled by the hypervisor, which only happens very rarely.

3.1.2 Abusing hardware virtualization for malware

As described in the previous chapter, prior rootkits where flawed since they had to hook at
some place in the operating system. An HVM rootkit is in this way fundamentally different,
as it will not hook anything inside the operating system and its processor context. Instead
it moves the operating system into the virtual machine, with all processor registers being
stored in the virtual machine control block. Now the hypervisor can do hooking outside the
virtual machine e.g. by setting one of the debug registers, but the guest operating system
cannot notice this, since it only sees its own virtualized debug-registers. This means the
hooking cannot be detected, unless there is a way to break out of the virtual machine (which
is impossible by design unless AMD/Intel or the hypervisor made a mistake that would be
fixed in future revisions). Because CPUs are very complex and computers even more, there
are still means that allow for the detection of malicious hypervisors. This is going to be
discussed in detail in chapter 4.

3.2 Technical Implementation Details

In order to better understand hardware-assisted virtualization malware, this section will
depict the concept in a little more detail with focus on the technical implementation of a
thin hypervisor. The description is here to give an idea and many things are simplified and
involve complex procedures that are difficult to get right in a real implementation. For an
in-depth reference, the corresponding manuals [AMD07a, Int07] should be consulted.

10

3.2 Technical Implementation Details

3.2.1 Moving the operating system into the virtual machine

Traditionally, hypervisors set up an isolated virtual machine, run the host inside and in-
tercept every hardware access. Thin hypervisors use a different approach, as they do not
want to interfere with most guest operations. The guest shall still be able to access all the
hardware as it did before, there won’t be any emulation, except for the very few instructions
that have to be emulated. As described in section 3.1.1, this works by cloning the real en-

CALL bluepill

Native Operating
 System

PROC bluepill

enable SVM

check
VMCB.exitcode

VMRUN

prepare VMCB

VMCB

RIP

Bluepill
Hypervisior

RET

only during first call

RET from bluepill PROC,
nver reached in host mode,
only executed once in guest
mode

Native Operating System continues to execute,
but inside the Virtual Machine this time

Figure 3.2: Illustration of the moving-into-VM process [Rut07b]

vironment and setting up the VM environment exactly alike. The environment of the guest
is defined by its general purpose registers and the virtual machine control structure/block
(Intel: VMCS, AMD: VMCB) which includes the processor state such as control registers
(see [AMD07a]), entry and exit controls for defining the transition from host to guest, as
well as the set of instructions to intercept and some other information.

Moving the operating system into the virtual machine happens in the following steps
[AMD07a, Int07].

Preparing SVM/VTx operation. Before enabling virtualized operations, the process must
be running in ring 0 which is the case for kernel-mode drivers. Next it needs to check
for HVM support by running through cpuid (VT-x: CPUID#0 must return bit 5 [Vir-
tual Machine Extensions (VMX)] set in the ECX register, SVM: CPUID#0x80000001
must return bit 2 [Secure Virtual Machine (SVM)] set in the ECX register) and then
enable HVM operation by setting a bit in the extended feature register register (VT-
x: CR4.VMXE, SVM: EFER.SVME). These bits are important, as they provide the

11

3 HVM rootkits

first approach for detecting HVM rootkits and the CR4/EFER register will often be
referenced in chapter 4.

On Intel architecture, VMX operation needs to be explicitly entered by issuing a
VMXON instruction and supplying a memory region for virtualized operations whereas
for AMD-V an explicit host save area has to be supplied in the VM HSAVE PA reg-
ister, which is a model-specific register (MSR) to support SVM operation.

Allocate and set up VMCB/VMCS. Each processor needs to have a memory region for
storing host and guest data on transitions. As has just been described, these regions
are set up in such a way that the guest operating system’s environment is cloned. For
this to work the upcoming hypervisor has to issue a sequence of write instructions filling
the region with the appropriate values. Furthermore the set of intercept conditions is
defined. A minimal hypervisor needs only to intercept very few instructions (VT-
x: CPUID, INVD, MOV from CR3 plus the ten VM* instructions to support VT-x
operation; AMD-V: VMRUN only; [Int07, MY07]).

Prepare a #VMEXIT handler. Like interrupt handlers to which the CPU delegates control
upon an occurring interrupt, the #VMEXIT handler handles guest-suspension events,
which are caused by the execution of an instruction, that the hypervisor set up to be
intercepted. The entry point for the handler is again specified in the VMCB/VMCS.
After the handling of the event, the hypervisor reenters the virtual machine and redi-
rects control again to the guest’s next instruction.

Switch to the guest. After setting up the environment, the #VMEXIT handler, and pro-
viding a guest entry point, the hypervisor will execute the guest-entering instruction
(AMD-V: VMRUN, VT-x: VMLAUNCH) by which the control flow continues seam-
lessly in the native operating system without knowing that it is emprisoned within
the hypervisor. Entering the guest is an event called #VMENTRY. The Intel manual
[Int07] specifies 11 pages of checks on the VMCS on this event, thus entering the guest
takes many CPU cycles and makes timing attacks an attractive detection approach,
that will be discussed in section 4.1.1.

3.2.2 Further hypervisor tasks

As [MY07] pointed out, kernel-mode rootkits (type 1 or type 2 see chapter 2) are already
“well-situated to hide from both user-mode programs and system-level security services”
so the only real motivation for type 3 malware is the undetectability even under expert
analysis. Therefore such a malicious hypervisor should implement certain features to avoid
trivial detection. Such features begin with cheating about the “virtualization enabled”-bits
in the EFER/CR4 register but continue into more advanced hiding-mechanisms such as time
cheating, memory hiding and virtualization emulation. Means of detection and methods for
the rootkit to counter them are going to be discussed in the following chapter 4. The most
basic hypervisor-rootkits will not implement those features, the proof-of-concept rootkit
Bluepill took the hard way though and implemented a couple of them.

As shown in the previous section 3.2.1, the hypervisor sets a flag in a special machine
register (EFER/CR4) to enable the hardware-assisted virtualization functionality. Any in-
guest software could now read the register and would know, that a hypervisor is likely to be
running by checking the flag, therefore the hypervisor has to intercept access to this machine

12

3.2 Technical Implementation Details

register in order to cheat about this flag, which is the source of most of the implications of
side-channel attacks discussed in section 4.1.

3.2.3 Details on Bluepill

For the analysis, the public version of Bluepill’s source-code from http://bluepillproject.
com (version 0.32) was used. Bluepill implements the basic thin hypervisor features as de-
scribed in section 3.2.1 within a generic framework supporting both Intel and AMD virtu-
alization, though only the latter one has been tried during this thesis. In addition to the
basic features, Bluepill supports nested virtualization for the AMD platform by emulating
the CPU’s virtualization instructions and coping with several non-trivial implications (see
also [Rut08, RT08]), thus allowing to run another hypervisor within Bluepill or even allowing
to run other Bluepill instances.

RDTSC timestamp cheating (as will be presented in section 4.1.1) is not implemented
anymore, probably because of the implications aroused from bigger differences in the time
stamp counter (TSC) register (see empirical results in section A.4). The bare skeletons for
RDTSC cheating through instruction tracing is still visible, however not functional. Due
to the more effective counter-based detection (see section 4.1.4), trying to hide TSC delays
does not add stealth anyways.

Virtual Memory

Figure 3.3: Bluepill private page tables [Rut07b]

In order to hide its own code from the operating system, Bluepill uses its own private page
tables. This works since the hardware virtualization extensions allow for an own CR3-register
storing the base address of the page directories. To still be able to function, Bluepill clones
parts of the operating system’s page tables and is thus able to access the original kernel-space
i.e. use the kernel API. Furthermore, Bluepill needs to make sure, that its pages cannot be
accessed by the guest. This is according to [Rut07b] accomplished by patching the original
page table entries (PTEs) to point to some garbage records (see figure 3.3). This mechanism

13

http://bluepillproject.com
http://bluepillproject.com

3 HVM rootkits

seems however not yet to be implemented in the publicly available version of Bluepill’s source
code. As a result, these versions can very well be detected through simple memory scanning.

Hypercalls

For debugging and demonstration-purposes, Bluepill provides an interface for calling the
hypervisor from within the guest. Such a mechanism is known as hypercalling. In Bluepill’s
implementation it is currently only used for unloading the driver. The process is initiated
in the guest and hypercalled to the hypervisor, who will then take the necessary actions to
uninstall itself. A hypercall will execute a cpuid-instruction with a special magic parameter
being subsequently intercepted and evaluated by the hypervisor. An advantage of using the
unprivileged cpuid instruction for this task, is that it can be run in ring 3 i.e. in user-space
by any program.

The bpknock program (see section A.2.1), which is used in debug environments to verify
whether Bluepill is running or not, makes use of the hypercall principle, too.

14

4 On detecting HVM rootkits

Theoretically, a virtual machine should not know that it is being virtualized and in fact there
is no direct and official way to find out for sure. However, a virtualized environment forces
some behavioral changes and noticeable side-effects. These can be detected. Unfortunately
though, the task of a detector is harder than detecting a running hypervisor. It has to
distinguish between good and bad hypervisors and as such the explicit detection of HVM
malware as described in second part of this chapter (section 4.2) is way more relevant than
general virtualization detection that is described in the following section.

4.1 Virtualization detection

The hypervisor is in an advantage position. By design it is meant to simulate an environment
to its guest, thus methods to cheat, ways to intercept instructions and hardware accesses
are built-in. Accordingly the hypervisor can cheat about all obvious means of detecting a
running hypervisor (see section 3.2.2). The remaining means of detection are side-channel
attacks.

4.1.1 Timing Attacks

It has been pointed out, that the hypervisor should intercept access to the EFER/CR4
register in order to cheat about the SVM/VMX enabled bit (see section 3.2.2). Intercepting
reads and writes will cause a #VMEXIT followed a #VMENTRY implying a delay (see
section 3.2.1) in reading the EFER register, which is the base of several detection vectors.

Direct timing analysis by reading timestamp counters

A computer has many means of measuring time in different granularities. One high resolution
timer is the timestamp counter (TSC) which is incremented with each CPU cycle. The
register’s resolution is high enough to provide an adequate mean of detecting a running
hypervisor as section A.4 will show with some empirical data.

A lot of other timers like the HPET (high precision event timer), PIT (programmable
interrupt timer), LAPIC (local advanced programmable interrupt timer), ACPI (Advanced
Configuration and Power Interface coming with three PITs) [PLF07] provide other accurate
enough time-sources. Such timers can be virtualized using interrupt interception [Rut07b]
or I/O-port interception, but this has to be done explicitly by the rootkit.

As an example, measures to cheat the TSC approach are discussed in the following sub-
section.

RDTSC offset cheating

Since timing is such an important feature, both the AMD-V and the VT-x specification allow
for easy modification of the timestamp counter (TSC) register of the guest machine. One

15

4 On detecting HVM rootkits

can even specify a constant offset in the VMCB/VMCS that is to be subtracted from the
TSC after each hypervisor interception. In practice, this feature proved not to be reliable
as a hypervisor stealth mechanism [MY07]. An HVM rootkit therefore needs to read the
TSC register using the RDTSC (Read Timestamp Counter) instruction before and after any
action and fix it manually, though it is not clear if this measure will produce a sufficient
stealth-level regarding TSC-based detection methods. Furthermore, there can be special
conditions, in which the counter is not reliable, such as when the CPU is changing speeds due
to power-saving features [Int07] or when the RDTSC instruction is not executed linearized
order [AMD07b].

Another way of acquiring the TSC value is to read it using the RDMSR 10 (Read Model
Specific Register number 10) instruction. Usually the register is read using RDTSC (Read
Timestamp Counter). [Rut07b] pointed out, that RDTSC and RDMSR 10 will produce
inconsistent results and suggested to use instruction tracing to get a well approximation of
the guest-side expected TCS value, which is a tough task considering the x86 instruction
set. Eventually, this would allow the hypervisor to hide from RDTSC timing detection.

Indirect timing analysis using external clocks

Summarizing the previous paragraphs, it can be concluded, that local timers can not be
trusted. Another timing detection approach tries to use clocks that can generally not be
intercepted by the hypervisor. Time could for example be read from a network clock or an
external stop watch. Unfortunately, these timer’s resolutions are no more sufficient to detect
a present hypervisor when only executing one hypervisor-intercepted instruction, because a
couple of thousand CPU cycles is no noticeable time delay. Thus the detector needs to run
many such instructions to get a noticeable time-delay. See listing 4.1 for an example on how
such a detector could work:

Listing 4.1: Hypervisor detector using an external time source [Rut07b]
t1 = GetTimeViaNTP ();
for (i = 0; i<BIGNUM; i++) RdMsr(EFER); // force #VMEXIT
t2 = GetTimeViaNTP ();
if (t2 - t1 > tMax) printf (" Troubles !\n");

BlueChicken strategy to prevent detection through external clocks

There is no reason for any software to execute a long loop of RDMSR EFER instructions as it
is required for the external clock based detection as presented in the previous paragraph. A
malicious hypervisor can detect such long loops and once detected take measures to prevent
the incurrence of timing differences. [Rut07b] proposed to uninstall the hypervisor for a
moment. The RDMSR instructions can then be executed without any interception delay
and the hypervisor which will reinstall itself through a timer after a very short time, would
remain undetected. This strategy has been called BlueChicken and is also implemented in
Bluepill.

However, this very behavior creates a fundamental vulnerability for the hypervisor, since in
the moment it uninstalls, it is not working anymore and it is furthermore not hidden anymore
and therefore at best type 2 malware (see section 2.1.3) having lost all its special stealth
features. Although, [PLF07] mentions that the measure of uninstalling and hiding in the

16

4.1 Virtualization detection

kernel is appropriate, since kernel malware is much harder to detect. However this is about
principle and if a measure to hide is downgrading to kernel-malware, the undetectability
claim of type 3 malware just does not hold at this level.

In Bluepill’s implementation the uninstaller sets a timer to reinstall it. But assume that
the antivirus will force the hypervisor to unload, disable interrupts for the moment and catch
its handler before it can reinstall itself. Not only it would be known then, that the system
is virtualized, but also that a malicious hypervisor had been running. This is a win-win
situation for the detector. Either it detects that the system is being virtualized or it catches
the rootkit in the act.

Other trusted timesources

Every computer comes with many pieces of hardware and most devices have one or more
embedded timers [PLF07] with sufficient granularity additionally to the ones already men-
tioned in section 4.1.1. A hypervisor cannot cheat about these time-sources, otherwise it
would have to intercept most device accesses and also implement tons of device driver code,
possibly introducing vulnerabilities that a detector could use to detect such a hypervisor
with even more ease. Also there will be the one or other device the hypervisor does not
know about, so to sum up, the effort will not pay off. Following the assumption that the
hypervisor does not implement device dependent timer interceptions, those provide a way
of determining that the operating system runs in a virtualized environment. The caveat is
however, that an antivirus vendor is not likely to make hardware-dependent products for
virtualization detection. Even if it did, one could still produce a targeted version of the
rootkit and implement a cheating mechanism for the special device the antivirus vendor is
depending upon.

In summary, timing attacks cannot be cheated perfectly. And although most of them can
possibly be cheated with enough effort, everything ends up as the usual rootkit cat-and-
mouse game, so it is probably better for all parties to not implement timing based detection
and counter-detection measures, but instead focus on other means of detecting an HVM
rootkit.

4.1.2 CPU-specific behaviour

[Rut07b] and [PLF07] suggested to take advantage of CPU-specific bugs, of which all pro-
cessors have at least some, although most of them cannot be used for the detection of a
hypervisor. An example of a probably usable bug is the erratum 140 (see [AMD08]) explain-
ing that the TSC OFFSET which can be specified in the guest’s VMCB will only be added
to the time stamp counter register (TSC) when it is via the RDTSC instruction, but not
when it is read via RDMSR 10 (read model-specific register number 10). The erratum also
shows a workaround of intercepting access to MSR 10 and to manually add the offset. The
hypervisor has to implement this workaround, to not be vulnerable to detection using this
very method. [MY07] pointed out, that the approach of relying “on processor model spe-
cific bugs rather than a generically applicable technique“ is unattractive, because it restricts
detection to certain CPU models.

Other approaches in this direction include the use of undocumented CPU features such as
undocumented MSRs and CSRs (model-specific control and status registers) [PLF07]. This
is equally unattractive for a generic detection approach though.

17

4 On detecting HVM rootkits

4.1.3 Profiling CPU resource discrepancies

Yet another type of side-channel attacks derives from CPU-caching behaviour and the cache’s
modification after hypervisor interceptions. The general idea is, that a forced #VMEXIT
leads to modifications in specially crafted CPU data-caches, because the hypervisor’s code is
being executed involuntarily tainting several caches. Rather than observing effects directly
which is seldom possible, because caches are CPU-internal features not meant to be directly
accessed, the effects have to be detected by side-channel analysis techniques such as timing
analysis.

The use of CPU’s performance event counters like the number of branch mispredictions
which can directly be read through an I/O-port is undesired, since I/O-ports can easily be
virtualized by the hypervisor [PLF07], who would intercept and fix these counters.

TLB Profiling

Another such CPU resource profiling method is TLB profiling. The Translation Lookaside
Buffer (TLB) is used for caching physical addresses of virtual addresses. Usually the oper-
ating system’s page tables have to be walked to get the corresponding physical address of
a virtual address. If a TLB entry is present, this lookup is not necessary, thus access to
memory is much faster.

TLB profiling works by filling all entries of the TLB and forcing a #VMEXIT. The
hypervisor “must at least read the VMCB’s exit code, requiring 1 data TLB entry“ [Ada07].
The detector would then notice at least one modified TLB entry clearly indicating the
hypervisor’s presence. This is true for AMD-V having tagged TLB entries. Because the
hypervisor and the guest can have the same virtual address each pointing to a different
physical address the entries are tagged using an application specific identifier (ASID) to
distinguish them. VT-x does not support ASIDs and therefore the TLB is flushed on each
#VMEXIT/#VMENTRY thus invalidating all TLB entries. For this reason TLB based
detection methods work better on Intel systems, because a bigger part of the cache is affected
by a hypervisor interception.

Figure 4.1: Illustration of the L2 TLB organization [Rut07b]

18

4.1 Virtualization detection

Filling the TLB is not as trivial as accessing N different pages, instead it must be taken
care of the multiple-way associativity. Each cache line can hold multiple values for the same
index, uniquely identified by a tag. The index is the value of lower bits of the virtual page
address (the lowest 12 bits for the page-offset are of no relevance for TLB operation and
therefore discarded). The remaining address-prefix that is not included in the index-value
is the tag, identifying which field of the cache line shall be used. A 4-way associative cache
setup is illustrated in figure 4.1. The testing system’s processor (see appendix A.4) has two
fully associative first-level (L1) TLBs (code and data) with 32 entries for 4kb-pages each.
These are relatively easy to fill, but they are backed up by a second level (L2) TLB cache
which is 4-way associative with 128 lines (512 entries). Additionally, the L2 TLB is shared
between code and data.

Since the detector cannot just read the TLB, it has to use other means of noticing that
a TLB entry has been modified. The easiest way is to access the same value on the page
again and compare the timing to the previously measured access time, which has been imple-
mented in a slightly modified form by Rutkowska and is included in the detection framework
presented in appendix A. Unfortunately though, a malicious hypervisor can potentially cheat
time measurements and consequently the following method, suggested by [Ada07], is pre-
ferred. In this approach after filling the TLB, the page table entry (PTE) for each page that

A := 1

TLB

B := 2

C := 3

D := 4 5

1 2

3 4

Physical Memory

A := 5

B := 5

C := 5

D := 5

Prepared TLB and patched PTEs

A := 1

TLB

B := 2

C := 3

#INVD

TLB after Interception

Access to virtual address D

CR3

P
a
g
e
 T

a
b
le

s

Figure 4.2: Different physical addresses returned after hypervisor interception

is assumed to be cached by the TLB is patched to a certain page with magic values prior to
forcing the hypervisor to run. Afterwards, the detector tries to access each page. If it gets
the old value, the TLB entry has still been present. But if it reads the magic value, the TLB
has not been hit, thus the page had to be looked up in the PTE again (see figure 4.2 for an
illustration). This way the detector can find out how many TLB entries have been modified
while running the hypervisor. Pseudo code of this approach is also given in listing 4.2. This
method is also implemented in the testing framework in appendix A.3.2, even though the
results are not distinct enough to reliably assess a hypervisor’s presence (see section A.3.2
and A.4 for details).

A variation of this technique using the code TLB has been presented by [PLF07]. They also
presented this method for the Intel platform with the advantage that #VMEXITs completely
flush the TLB on VT-x due to the lack of ASIDs. Thus all entries are invalidated, so that
the detector does not have to worry about second-level caches. The method can therefore
ascertain the hypervisor’s presence.

In summary, TLB-based side-channel approaches seem to be a reliable method for hyper-

19

4 On detecting HVM rootkits

Listing 4.2: TLB Profiling [Rut07b] (spelling mistakes corrected)
for (i = 0; i < N; i++) page[i] = Alloc4kPage ();
page22 = Alloc4kPage ();
for (i = 0; i < N; i++) memset (page[i], 0x11 , PAGE_SIZE);
memset (page22 , 0x22 , PAGE_SIZE); //page with "magic" values
for (i = 0; i < N; i++) x = page[i][0];
for (i = 0; i < N; i++) RemapPTEForPage(page[i], PhysAddr(page22));

RDMSR EFER // force #VMEXIT

for (i = 0; i < N; i++) if (page[i][0] == 0x22) break;
if (i < N) printf ("VMM might be in the system !\n");

visor detection in non-virtualized environments.

[Rut07b] also suggested a counter-detection measure based on Nested Pages / Shadow
Page Tables (the hypervisor is basically notified when the guest modifies its page-tables),
noticing a massive PTE patching and using BlueChicken (this was described in section 4.1.1)
to uninstall for the moment.

This approach does not seem to be thought throughly, since a generated page-fault (#PF)
when the detector writes the PTE will destroy some TLB mappings anyway, thus there
should be no difference in detecting the hypervisor. Additionally the BlueChicken method
yields the same problems as when used for time cheating (see section 4.1.1).

Cache Invalidation

The INVD (Invalidate Internal Caches) instruction flushes the cache discarding queued
writes. Thus modifications in cache that were not yet written memory are lost. To use
this method as a detection approach [PLF07] proposed to fill the cache by writing to mem-
ory, force a #VMEXIT and flush out the whole cache by executing an INVD immediately
afterwards. If the modifications indeed hit memory, a hypervisor is likely to be present,
because otherwise no data would have been written back to memory.

When implementing this detection method, additional care needs to be taken again due
to the CPU-dependent complexity of multiple-level and multiple-way associative caches.

Return Stack Buffer (RSB)

A recent presentation [Bul08a] implemented a detection approach based on the impact of a
#VMEXIT on a CPU’s Return Stack Buffer which is an “internal hardware ‘stack’ in CPU”
predicting the “target address of RET instruction before it is available from memory”. This
stack typically has 16 entries and mispredictions have a timing penalty. The detection
approach is based on filling the stack using 16 nested call-instructions, forcing a #VMEXIT
and checking the timing after all functions returned (see illustration in listing 4.3). Since
the hypervisor is likely to replace RSB entries, at least some of the rets will miss the cache
and thus take longer execution time. If the measured time exceeds a certain treshhold, a
hypervisor is present.

20

4.1 Virtualization detection

Listing 4.3: RSB detection (RSB spy by [Bul08a])
func15 () {

cpuid ; #VMEXIT on VT
rdtsc ; start measurement
ret ; start 16 returns

}
func14 () {

call func15
ret

}
..
func0 () {

call func1
ret

}
spy() {

cli
call func
rdtsc ; end measurement
sti

}

4.1.4 Counter-based detection

The counter based attack (first presented by [Bar07]) is an easy straightforward attack to
detect the presence of a hypervisor. However, it requires at least two processor cores, since
it will run a counter on one of them while the other core forces a #VMEXIT by executing
an instruction that the hypervisor will intercept such as RDMSR EFER (see section 3.2.2)
for AMD-V or CPUID for VT-x. If the counter exceeds a certain value, it can be assumed
that the system is virtualized (see figure 4.3 for an illustration). The wonderful thing about
this attack-vector is, that the counter will exceed the limit while the other processor is
still context-switching to the hypervisor, which means as soon as the hypervisor intercepts
the instruction, it is already too late for anything the hypervisor could possibly do. This
attack is implemented in the test suite provided with this thesis (see section A.3.1). There
is no known way to cheat this attack, unless the hypervisor takes insane measures such
as instruction scanning which provides even more attack vectors and equally leads to the
hypervisor’s detection.

4.1.5 Side Channel Attacks with nested virtualization

Side channel attacks as described in the previous sections will not straightforwardly work, if
the system is already running in a hypervisor like Xen.

If the guest-system is para-virtualized, executing instructions such as VMRUN will not
cause a #VMEXIT but a #GP (General Protection Fault) since the guest is running in
ring 3, thus the impact on the guest is zero overhead instructions if running on an AMD
processor, because the hypervisor did not even intercept anything. On Intel processors
there are obligatory intercepts like CPUID, INVD or MOV CR3 [RT08] introducing timing
differences.

21

4 On detecting HVM rootkits

TIME

CPU #2

CPU #1 Hypervisor in
control

#
V

M
E
X

IT

~0x1000 CPU cycles before transfering
control to the hypervisor

repeatedly increment a counter

Figure 4.3: Illustration of counter-based attack. [Rut07b]

For HVM guests, in nested virtualization implementations the top-most hypervisor needs
to execute another VMRUN instruction (see [Rut08] or [RT08] for details on nested vir-
tualization) and thus introduces a noticeable timing difference ranging from 2.000 cycles
to 24.000 cycles compared to the native Xen baseline of a #VMEXIT-time of 5.000 cycles
[RT08]. Still though, timing based detections should not be trusted too much, as RDTSC
cheating (see section 4.1.1) is still a possible counter-measure.

Cache modification based detection will not work in guest domain, because Xen will
intercept priviliged instructions anyways and thus already introduce changes in the CPU’s
caches. It has not been assessed if the additional interception of a malicious hypervisor
might introduce enough changes to distinguish if an instruction has been intercepted by one
or two hypervisors. Considering for example the TLB profiling method (see section 4.1.3)
on the Intel platform, there is no noticeable difference, since both hypervisors completely
flush the TLB.

Other side-channel attacks will only work in the hypervisor domain on instructions the
HVM rootkit intercepts.

22

4.2 Explicitly detecting a malicious hypervisor

4.2 Explicitly detecting a malicious hypervisor

In the previous chapter 4.1 ways of detecting virtualization were discussed in detail. Still yet,
this detection approach can not distinguish between good and bad hypervisors at any level.
Knowing that the operating system is virtualized may be enough to know that something
is not right (i.e. an HVM rootkit is running) in special situations when you do not expect
to be in a virtualized environment. Unfortunately though, with growing importance of
virtualization technology even on desktop systems, it is not uncommon that an operating
system is running within a hypervisor and therefore the information gained in the previous
section will be worthless in many situations. It is naive to restrict a detector to unvirtualized
machines, thus explicitly detecting the malicious hypervisor is of even greater importance.

Furthermore should be noted that the hypervisor should not prevent virtualization de-
tection, otherwise it can be easily found. This is because a detector finding out that it
resides in a virtualized environment, would look for discrepancies like RDTSC cheating or a
BlueChicken implementation (see section 4.1.1). If such a measure is found, the detetor can
be relatively sure, that malware is running, since there seems to be no reason a legitimate
hypervisor would implement these techniques.

4.2.1 Signature Detection

An ideal malicious hypervisor would use its own pagetables and would therefore be discon-
nected from the virtual address space of the guest OS (see the illustration in figure 3.3 on
page 13). Consequently the guest has no clue of the existence of the hypervisor within its
virtual address space.

In order to scan for a hypervisor’s signature however, the detector needs firstofall to be
able to read memory that is invisible to it due to the disconnected address-spaces. Thus
to actually access the hypervisor-code, the guest has to somehow get raw access to memory
and there are basically two approaches to do that:

PTE patching The easiest method to access a raw page, is to modify a page table entry
(PTE) for a certain virtual address to point to the desired physical address. Then the
detector can access and scan the page for a known signature. The hypervisor can defeat
this by using Shadow Page Tables that trigger a page fault (#PF) on write access and
allow the hypervisor to monitor access to the guest’s page tables. Rather than using
Shadow Page Tables, which are according to [Rut07b] difficult to implement correctly,
one can use Nested Page Tables (introduced into AMD-V with AMD Barcelona) which
are a much easier to implement hardware-assisted solution for Shadow Page Tables that
can effectively hinder the guest from patching PTEs to hypervisor code pages.

Hardware-based acquisition will be discussed in section 4.2.2.

Even when getting raw memory access, the scanner is still in the disadvantage of seeing
non-connected scattered pages in the physical address space. Scanning for a given code
signature is possible, but obfuscation techniques such as polymorphic code can be used by
targeted attacks to avoid signature detection and it is generally known that there is no
programm that can verify what another programm does. It should be pointed out though,
that techniques to avoid signature detection can be used by classical rootkits, too. The
fundamental difference however is, that classical rootkits could theoretically be knocked out

23

4 On detecting HVM rootkits

by formal verification methods of the operating system’s state, which does not work for their
HVM siblings.

Instead of scanning for code signatures, a scanner can look for the signature of the VM-
CB/VMCS, which cannot be obfuscated very well. This has the additional advantage of now
having access to all information the hypervisor has, such as its CR3 register value allowing
to access its page tables and seeing its virtual memory non-scattered anymore. Also the
entry point for the #VMEXIT handler is provided by the VMCB/VMCS.

Raw memory access is not directly possible if the rootkit implements techniques to prevent
it and even when being able to access raw memory, the scanner still has to find the code and
distinguish between good and bad hypervisors. For all that, HVM rootkits are in the game
again.

4.2.2 Hardware-based memory acquisitions

As described in the previous section, the OS can trick software-based solutions for raw
memory access (and this is good, otherwise real hypervisors would be in trouble), so direct
hardware-access to memory is the best bet for detecting a malicious hypervisor.

Direct Memory Access (DMA) allows devices to access system memory without the CPU’s
intervention. In the past years DMA based memory acquisition got a lot of attention in
computer forensics, especially because of the FireWire bus’ capability for DMA [BDK05]
easying memory dumps to a new level. If FireWire is not available, other DMA capable PCI
devices can be used. Dedicated devices for this task like Tribble or CoPilot by Komoku have
been developed, but no such device seems to be publicly available. According to [PLF07]
other PCI devices can be abused to read memory for the detector. They also claim that the
GART (Graphics Address Remapping Table), which is the graphic card memory mapping
unit, can be used for this task.

In the near future however, these methods will no longer work, because with AMD’s
IOMMU (input/output memory management unit) and Intel’s VT-d (Virtualization Tech-
nology for Directed I/O), new CPUs will allow for memory mapping of DMA. This is impor-
tant for virtualization because virtualized machines have usually no direct access to physical
memory and are likewise not capable of using DMA devices. These technologies bring back
the control to the hypervisor, sadly enough rendering another method of HVM rootkit de-
tection impossible.

Additionally there are methods for defeating hardware-based memory acquisitions by mod-
ifying the North Bridge’s memory mapped I/O address dispatch table [Rut07a]. With this
technique the CPU still has access to the memory while all other devices are redirected to
garbage records or can even be used to crash the machine, when someone tries to access raw
memory.

In summary, neither software-based nor hardware-based RAM acquisition can be trusted.
Although virtualization can be detected, a properly implemented HVM rootkit can defeat
all feasible methods of memory acquisition (exceptions are discussed in the following section
4.2.3). This is not only a problem for detection: Even if it is known that such a rootkit
is running on the system, there is no way of getting its code-base after it has been loaded,
thus the rootkit cannot be analized and signatures cannot be developed. This is probably
the root for the undetectability claims that have been made for HVM malware. With some
preparation though, acquiring the malware’s codebase could still be acomplished using some

24

4.3 Passive detection

ideas discussed in section 6.4).

4.2.3 “Insane Detection of Insane Rootkits”

A rootkit can do its best, to hide its code and to defeat anyone from accessing it, but it can
never succeed completely. One can for example use crafted memory controllers that explicitly
allow for an external acqusition. But one does not have to build special hardware to detect a
rootkit in a system because there is already enough hardware inside: Very recently [Bul08b]
presented a detection approach based on programming embedded micro controlers in the
chipset again using DMA to get raw access to memory to scan for the rootkit. Contrary
to methods using PCI hardware the chipset firmware is able to access the DMA remapping
unit and disable it for the detection program. It was demonstrated, that a hypervisor with a
known signature can be found and even be disabled (removal of hypervisors will be discussed
in section 4.4) using this technique. The caveat however is, that the software needs to be
chipset specific getting even closer to the hardware than the hypervisor and has yet only
been presented for the Intel platform.

A similar (yet less insane) position to place a detector is the System Management Mode
(SMM) which “is a relatively obscure mode on Intel processors used for low-level hardware
control” [ESZ08], has direct memory access, is relatively invisible to the operating system
and is thus a perfect place for a detector to scan the system’s memory. On a sidenote, SMM
is also very attractive for rootkit developers due to associated stealth features and [ESZ08]
already presented such a SMM-based proof-of-conecpt rootkit. However, SMM rootkits are
really outside the scope of this document.

Eventually though, using very low-level hardware features, detectors can acquire raw
memory, thus the arms race continues.

4.3 Passive detection

For the sake of completeness, be it mentioned, that network traffic introduced by any rootkit
with network functionality (which usually is desired), can be detected. However, secret,
undetectable covert-channels provide a relatively easy way to hide (see [Rut04b] for details).

4.4 Removal of a malicous hypervisor

One step beyond detection the question arises on how to get rid of the rootkit. A simple
method is to reboot the computer and unless the rootkit has some permanence features, it
will be gone immediately.

Another method could be to read the VMEXIT entry point address from the VMCB/VMCS
and patch the VMEXIT handler in such a way, that it restores the guest state in the hypervi-
sor privilege level, effictively pulling the native operating system out of the virtual machine.
The rootkit’s code and data will still be present in system memory, but will not be executed
again.

25

4 On detecting HVM rootkits

26

5 On preventing HVM rootkits

The previous chapter focussed on the detection of HVM rootkits. The 100% undetectability
claim does not hold, however detection of such rootkits is very hard or nearly impossible
once it installed itself as a hypervisor. Therefore it becomes important to focus on how it
is possible to prevent these rootkits from installing and becoming a hypervisor in the first
place.

Windows Vista 64 requires all kernel-mode drivers to be digitally signed, thus no untrusted
code can be loaded. Except not quite, because malware can exploit trusted buggy drivers as
has been illustrated for example by [Rut07b]. Consequently the protection does not hinder
from getting kernel-mode access and installing a hypervisor.

Consequently, the basic idea of preventing HVM rootkits is the restriction of CPU’s vir-
tualization extentions to authorized software. There are several ways to do that.

5.1 Hardware supported authorization

Since virtualization needs to be explicitly enabled on the hardware, the hardware can be the
first line of defense against the installation of an untrusted hypervisor.

5.1.1 BIOS support

Several BIOS allow to disable virtualization extensions. For example on the Intel plat-
form, the CR4.VMXE (AMD: EFER.SVME) bit must be set to 1 prior to enabling vir-
tualization extensions using VMXON (see section 3.2.1 for details on enabling virtualiza-
tion). However, the bit cannot be modified anymore once the LOCK bit is set to 0 in
the IA32 FEATURE CONTROL (AMD: VM CR) model specific register (MSR), thus the
BIOS can set CR4.VMXE=0 and LOCK=0 to disallow the usage of virtualization exten-
sions, which makes it impossible for a HVM rootkit to install, but also disables legitimate
usages of virtualization. AMD-V comes with a similar feature, described in the next section.

5.1.2 Unlockable virtualization

In addition to the basic disable and lock feature, which has been described in section 5.1.1,
AMD-V allows furthermore to re-enable virtualization extensions using a 64-bit key even if
the LOCK bit is set (see section 15.29 in [AMD07a]). Therefore, the user would need to
enter the key for the valid hypervisor who can then re-enable SVM and install itself, while
hindering a malicious hypervisor from doing so because of the missing key.

5.1.3 TPM support

With Intel’s Trusted Execution Technology (TXT, formerly LaGrande) and AMD’s SVM
(Presidio) both vendors introduce a trusted computing environment with hardware support

27

5 On preventing HVM rootkits

through a Trusted Platform Module (TPM) with instructions (Intel: GETSEC[SENTER],
AMD: SKINIT) that can effectively reboot the CPU into a trusted state using a TPM verified
secure loader. For example Intel has a flag in the IA32 FEATURE CONTROL MSR that
allows the execution of VMXON (to enable virtualization extensions) only in SMX (Safer
Mode Extensions) operation and causes a general protection fault (#GF) otherwise [Int07].
SMX operation can be entered through the just mentioned GETSEC[SENTER] instruction,
thus effictively restricting virtualization extensions to TPM verified software.

These approaches may be combined with the installation of a trusted hypervisor, which
is going to be described in the next section.

5.2 Installing a trusted hypervisor first

An easy to implement idea of protecting against installation of a malicious hypervisor, is to
install a trusted hypervisor first. Once it is running a HVM rootkit is effectively hindered
from installing itself, because there can only be one hypervisor in the system. Unfortunately

(Trusted) Hypervisor

OS

Hardware

Some
driver

Some
device

Read/Write
memory access!

I/O: asks the
device to set
up a DMA
transfer

Figure 5.1: DMA flaw in trusted hypervisors [Rut08]

for this technique, without proper IOMMU/VT-d support, the rootkit could still use the
same techniques that were earlier proposed to detect a running hypervisor (see section 4.2.1)
to render the trusted hypervisor useless. Using a DMA transfer-channel with a device whose
operation is not virtualized, the rootkit can write on the hypervisor’s pages in memory and
take over control (see figure 5.1).

However, since IOMMU/VT-d technology is upcoming (the first desktop systems with
IOMMU support were according to [RW08] available around October 2007), this won’t be a
problem in the future.

28

6 Conclusions and Prospective

In the previous chapters rootkit ideas were introduced (chapter 2) to give a small overview
of the terrain this thesis is dealing with. Hypervisor rootkits and their implementation were
presented (chapter 3) and provide the required technical background for understanding and
evaluating the technology on which base numerous detection approaches that were suggested
in the last two years could be explained and evaluated (chapter 4). Also the difference
between virtualization detection (section 4.1) and explicit rootkit detection (section 4.2)
was pointed out, concluding that detection can only happen using reliable memory access
methods. Technologies and ideas to hinder a rootkit from installing itself as a hypervisor
were eventually discussed (chapter 5), giving a surround image of all aspects of HVM rootkits
allowing for a knowledge founded evaluation of the technologies’ threat.

6.1 Threat-Evaluation

As HVM rootkits have not yet been seen in the wild in real attacks (besides some proof-of-
concept reference implementations), their impact is still hard to assess. While the technology
is frightening, it is equally unlikely to have a working fully-armed HVM rootkit implemen-
tation with complete protection against memory acquisition due to the hardware-dependent
issues that need to be taken care of. Building such a rootkit is however possible and the
enemy should never be underestimated. With these prerequisites, HVM rootkit prevention
becomes important.

It is very well possible to detect a virtualized system (i.e. a running hypervisor). All the
presented techniques for detecting and hiding from detections basically fall back to the usual
cat and mouse game that can be observed with traditional rootkits, too, with the hypervisor
still being in the disadvantage since the proposed detection approaches require a lot of effort
to be cheated. Hence we can conclude, that detection of virtualization works fine, if the
system is not to be virtualized. In contrast, as has been shown in the previous chapter
(section 4.2), it is the detector who is in a disadvantage situation once the system is already
supposed to be virtualized.

Since reference implementations for basic HVM rootkits already exist for both the AMD
and the Intel platform, the likelihood of basic virtualization-based rootkits increases, espe-
cially because no detection techniques have yet been incorporated into antivirus software.
The hardware-dependence is still a huge drawback though, as those rootkits only run on
newer AMD or Intel processors. Also the non-permanence of these rootkits is unattractive
for the infection of user-desktop systems.

Furthermore should be noted, that there is no real need for type 3 malware right now,
because formal integrity verification procedures are hard to implement and do not yet exist.
Therefore targeted attacks of non type 3 malware have still no troubles with infecting systems
and avoiding detection.

29

6 Conclusions and Prospective

6.2 Undetectable Stealth Rootkits

One of this thesis’ motivations is the question of the potential possibility of writing com-
pletely undetectable malware. Fortunately, nothing is 100% undetectable. Everything leaves
traces and with the right tools, hardware can be disassembled and monitored. Nevertheless
such measures are usually not feasible. Thus the question remains, how high the bar for
detecting malware can be raised. One can imagine several types of type 3 malware of which
HVM rootkits discussed in this thesis are just one. Side-channel attacks and lower level
hardware allow for their detection. However future rootkits could use the very places that
are used for detecting HVM rootkits, to hide themselves or trick detectors.

While the classical detection approaches do not work anymore for such malware, the rootk-
its’ arms race will certainly continue with rootkits finding new places to hide (as happened
recently with Intel’s System Management Mode [ESZ08]) and antivirus vendors investigating
new ways to track them down.

6.3 Applications for thin hypervisors

Besides the virtualization of machines and the abuse of hardware virtualization for malware,
there is still a great potential for other uses based on such thin hypervisors.

Analysing traditional malware can be a very intricate task if the malware uses anti-
debugging techniques of which there are very powerful ones, defeating local debuggers and
reverse engineering tools with ease. While virtual machine debuggers that can bypass some
of the measures already exist, undetectable hypervisor-assisted debuggers could be more
powerful and effective especially since para-virtualization can easily be detected and be im-
plemented into anti-debugging techniques.

The idea of trusted hypervisors (see section 5.2) can be extended to trusted hypervisors
implementing nested virtualization, which can furthermore be a powerful tool for monitoring
system resources and setting up honeypots for HVM rootkits. If more of these rootkits are
seen in the wild, such systems will provide a handy environment for analysis and acquirement
of the malware’s code-base.

6.4 Further tasks / research

In chapter 4.1 several approaches on detecting virtualization were presented, while only
some of them come with implementations. Since most of them are based on similar concepts
there is no need to implement all these methods, especially because they only allow for
virtualization detection and not for explicit detection of a malicious hypervisor. A much
more useful investment of time and resources are the direct detection approaches, like a
signature scanner based on patching page table entries (as described in section 4.2.1), which
raise the bar for implementing such rootkits and make them more unattractive.

Current research on HVM malware focused solely on the x86 processors. Other archi-
tectures (such as SPARC) also have support for hardware virtualization, thus the threat of
virtualization malware needs to be evaluated on these architectures, too, although the impact
is certainly significantly less than on x86 due to the widespread dominance of x86 processors.

30

6.4 Further tasks / research

Furthermore is the concluding tenor of this thesis the need for an effective way of preven-
tion. If a CPU features virtualization extensions, a trusted hypervisor should be running
to prevent infection with HVM malware. If the system is already running in a hypervisor,
it needs to be taken care of verifying the hypervisors integrity. Projects like HyperGuard
[RW08] that run in System Management Mode (and should therefore be tamper-proof), aim
to verify that there is no untrusted code in the hypervisor. The chipset approach (see section
4.2.3) could be of additional assistance for this task.

Theoretically, the techniques exist. They just need to be properly implemented and em-
ployed, so that no one has to fear virtualization technology.

31

6 Conclusions and Prospective

32

A Empirical Results

In order to evaluate Bluepill, implement and test detection methods and conduct own mea-
surements, a testing system has been set up. This practical part of the thesis describes
necessary steps and actions used to prepare the testing machine for running Bluepill. In
section A.3 the implementation of the detection methods implemented in the testing frame-
work is described. Section A.4 analyses several tests that were conducted evaluating those
detection methods.

All material associated with this thesis including source code for the testing framework is
available online at:

http://www.nm.ifi.lmu.de/pub/Fopras/frit08/

A.1 Preparing Windows for home-brew drivers

Windows Vista 64 requires all drivers to be digitally signed with Microsoft-trusted cer-
tificates. This makes it hard to run own kernel-mode code in the first place, but using
hardware-virtualization requires ring 0 privileges and thus needs to be run in kernel-mode.
[RT06] proposed to abuse buggy kernel-drivers to load some shellcode into ring 0 due to the
fact that there would be no sense for a malicious software author to obtain a certificate from
Microsoft. However, for the scope of the document it is only required to run the drivers on
the local machine and therefore an unsigned certificate can be used.

For this to work, a certificate needs to be created and added to the trusted publisher and
root store [Chi] as shown in listing A.1.

Listing A.1: Adding a trusted self-signed certificate
makecert -sr localMachine -ss PrivateCertStore -n CN=BLUEPILL \

testcert.cer

certmgr /add /c /s /r localMachine CA /n "Root Agency" /s /r \
localMachine root

certmgr -add testcert.cer -s -r localMachine trustedpublisher

This certificate can now be used to sign drivers with the command shown in listing A.2.

Listing A.2: Signing a driver with a self-signed certificate
SignTool sign /v /s PrivateCertStore /n BLUEPILL /t \

http :// timestamp.verisign.com/scripts/timestamp.dll driver.sys

However, Windows Vista 64 will even refuse to load these self-signed drivers unless special
boot flags are set. Therefore TestSigning needs to be enabled and integrity checks need to
be disabled using BCDedit as shown in listing A.3.

33

http://www.nm.ifi.lmu.de/pub/Fopras/frit08/

A Empirical Results

Listing A.3: Enabling TestSigning und disabling integrity checks
bcdedit /set TestSigning on
bcdedit /set nointegritychecks on

In order to verify, that Windows in fact allows loading of own code now, a simple Hello
World driver is created. This is illustrated in the following listings A.4, A.5 and A.6. The
Windows Driver Kit (WDK) needs to be obtained through obscure Microsoft websites prior
to being able to compile this demo.

Listing A.4: hello.c – The Hello World Driver Source
#include <ntddk.h>
NTSTATUS NTAPI DriverUnload(IN PDRIVER_OBJECT DriverObject)
{

DbgPrint (" Driver unloading\n");
return STATUS_SUCCESS;

}
NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject ,

PUNICODE_STRING RegistryPath)
{

DbgPrint ("Hello , World\n");
return STATUS_SUCCESS;

}

Listing A.5: makefile – The Hello World Driver Makefile
!INCLUDE $(NTMAKEENV)\ makefile.def

Listing A.6: sources – The Hello World Driver sources-file
TARGETNAME = hello
TARGETPATH = obj
TARGETTYPE = DRIVER

INCLUDES = %BUILD %\inc
LIBS = %BUILD%\lib

SOURCES = hello.c

The driver can now be built using the build-command from the WDK which can be
accessed through the “Windows Vista and Windows Server Longhorn x64 Checked Build
Environment”. The driver needs to be signed afterwards as shown in listing A.2. Since
Windows has no modprobe-like utility, a third party driver loader has to be used. Here the
tool w2k load.exe from the w2k internals package was used. The DbgPrint statements can
now be observed through some debugging tool such as Debugview from SysInternals1.

A.2 Running Bluepill

The Bluepill source can be obtained on http://bluepillproject.com. Once unpacked the
tool can be build using the build-command in the build environment and needs to be signed

1http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

34

http://bluepillproject.com
http://technet.microsoft.com/en-us/sysinternals/bb896647.aspx

A.2 Running Bluepill

again (see listing A.2). For debugging-purposes Bluepill uses a shared memory region with
a debug-client driver, which means that in order to see Bluepill’s debug messages this driver
has to be compiled, signed and loaded too. Loading works again using the w2k load-utility.

Once Bluepill loads, all the hypervisor-magic happens silently and unless the Debugview
program is running, there is exactly nothing to observe.

A.2.1 Verifying Bluepill’s presence in a debug environment

To verify that Bluepill is running, one can:

Use the Debugview program. It will show Bluepill’s DbgPrints if Bluepill is configured to
use the debug client.

Knock at Bluepill’s door. For this, the Bluepill-package includes a tool named bpknock
which executes cpuid with a special magic parameter. If Bluepill is indeed running
(and the knock-command has been compiled into Bluepill) a special magic value will be
returned. These values are defined in nbp-0.32-public/common/common.h. Listings
A.7 and A.8 illustrate this call.

Listing A.7: bpknock (Bluepill running)
$ bin/i386/bpknock.exe 0xbabecafe
knock answer: 0x69696969

Listing A.8: bpknock (Bluepill not running)
$ bin/i386/bpknock.exe 0xbabecafe
knock answer: 0

View memory pool usage. During this thesis’ analysis of Bluepill’s source code, it has been
found out, that Bluepill allocates its pool memory through Windows memory alloca-
tion API with a special tag. Therefore the poolmon-utility can be used to monitor
this usage. The tag-value (named ITL TAG defaulting to ’LTI’) is again defined in
nbp-0.32-public/common/common.h. For monitoring and analysis reasons Bluepill
was modified to use different tags for different types of memory allocations. The tag
’BLUE’ is used for general memory, ’BLUP’ for allocated 4kb-pages and ’BLBP’ for
bigger page allocations. This produces the following results when Bluepill is running:

Listing A.9: poolmon -iBLUE -iBLUP -iBLPB

Tag Type Allocs Frees Diff Bytes

BLPB Nonp 27 (27) 0 (0) 27 249856 (249856)
BLUE Nonp 188 (188) 0 (0) 188 15040 (15040)
BLUP Nonp 109 (109) 0 (0) 109 446464 (446464)

There are 188 small buffers in use. 109 4kb pages plus 27 bigger pages were allocated
while cloning the operating system’s page tables.

Detect Bluepill for example with one of the detection tools provided in the next section.

35

A Empirical Results

A.3 Own Developments

In order to ease scanning the system, a testing framework for several detection methods was
implemented within this thesis. This framework is a simple driver exposing the detection
mechanisms through an IOCTL-interface, with the IOCTLs as listed in figure A.1. [One03]
has been a great help in implementing this.

IOCTL CODE Value Function
IOCTL BLUEPILL COUNTER RDMSR 0x222002 Counter-based detection using RDMSR EFER
IOCTL BLUEPILL COUNTER CPUID 0x222006 Counter-based detection using CPUID
IOCTL BLUEPILL TIMING RDTSC 0x222042 Timing-based detection using RDTSC
IOCTL BLUEPILL TIMING RDTSCP 0x222046 Timing-based detection using RDTSCP
IOCTL BLUEPILL TIMING MSR10 0x22204A Timing-based detection using MSR 10
IOCTL BLUEPILL TLB HIT RDMSR 0x222082 TLB misses based detection using RDMSR EFER
IOCTL BLUEPILL TLB HIT CPUID 0x222086 TLB misses based detection using CPUID
IOCTL BLUEPILL TLB TIME RDMSR 0x2220C2 TLB cache timing detection using RDMSR EFER
IOCTL BLUEPILL TLB TIME CPUID 0x2220C6 TLB cache timing detection using CPUID

Figure A.1: IOCTL-Codes for the testing framework

A.3.1 Implementation of the counter-based detection

The counter-based detection has been discussed in section 4.1.4 and its implementation
is straightforward. The driver is running in kernel-mode, starts a second kernel thread
and orders each thread to acquire one fixed CPU using KeSetSystemAffinityThread. In
order not to be disturbed by context-switches to other threads/processes the hardware-
priority is raised to DISPATCH LEVEL using KeRaiseIrqlToDpcLevel. Synchronisation of
both threads happens through a busy waiting strategy, which is fine for the short waiting
interval. Therefore the hypervisor-calling thread waits until the counting thread started.
In this implementation there is no hard threshold in the counter thread which might safely
assume virtualization after more than a couple of hundred cycles (see section A.4). This
would just be a minor modification though. However, the real values are for the time being
of greater interest, thus the counting thread continues until the hypervisor is finished. Listing
A.10 (page 37) shows the source code of this method in a slighty simplified manner.

A.3.2 Implementation of TLB-based detection

TLB profiling methods have been discussed in section 4.1.3. The method implemented for
the testing framework (additionally to the cache timing based method which was developed
by Rutkowska and also integrated into the framework) works as follows:

Allocate pages. There are two TLBs on the testing machine. The L1 TLB has space for 32
entries of 4kb-data-pages, whereas the L2 TLB is 4-way associative with 128 entries
for each set resulting in a total of 512 entries.

Figure 4.1 on page 18 illustrates that in order to fill each L2 TLB entry, four pages of
each index with different tags each are required (see section 4.1.3 for a description of
multiple-way associativity). Luckily if one manages to allocate a continuous chunk of

36

A.3 Own Developments

Listing A.10: counter-based detection procedure (simplified)
ULONG globalSMPCounter;
ULONG smpStartValue;
ULONG smpEndValue;

VOID Thread1(void) {
KIRQL OldIrql;
CCHAR cProcessorNumber = 0;

KeSetSystemAffinityThread ((KAFFINITY) (1 << cProcessorNumber));
OldIrql = KeRaiseIrqlToDpcLevel ();

while(globalSMPCounter ==0) ; //wait until the other thread started

smpStartValue = globalSMPCounter;
read_msr_efer (); //say hello to mister hypervisor

smpEndValue = globalSMPCounter;

KeLowerIrql (OldIrql);
KeRevertToUserAffinityThread ();

}

VOID Thread2(void) {
KIRQL OldIrql;
CCHAR cProcessorNumber = 1;

KeSetSystemAffinityThread ((KAFFINITY) (1 << cProcessorNumber));
OldIrql = KeRaiseIrqlToDpcLevel ();

while(smpEndValue == 0) globalSMPCounter ++;

KeLowerIrql (OldIrql);
KeRevertToUserAffinityThread ();

}

ULONG RunTest(void) {
globalSMPCounter = 0;
smpEndValue =0;

StartThread(Thread2);
Thread1 ();

return smpEndValue -smpStartValue;
}

37

A Empirical Results

512 4kb-pages, these requirements are already fulfilled, though it turned out, that it
is not that easy to convince Windows to allocate such a big chunk of 4kb-pages since
it prefers to go for 2MB pages which are of no interest for the detection approach.
Another 32 pages are allocated for the L1 TLB.

Write Pattern. Using memset() all pages are filled with the value 0x22. One additional
trap page is filled with 0x11.

Fill TLB. To provide results as accurate as possible, the TLB is flushed first. Now each
memory page is accessed in order to cache its physical address in the TLB: at first the
512 pages that are supposed to be saved into the L2 cache, followed by the 32 pages
that fill the L1 cache.

Remap PTEs. Eventually the PTEs of all those pages are remapped to point to the addi-
tional 0x11-filled trap page.

Force #VMEXIT. The hypervisor intercepts and accesses pages in memory tainting the
prepared caches.

Check TLB state. Each page is accessed again. If 0x22 is read, it is known that the TLB
cached this page’s physical address. But if 0x11 is read, there was a TLB miss hence
the CPU walked the page tables and read the patched physical address pointing to the
trap page. The number of replaced TLB entries can then be acquired by counting all
such TLB misses.

There are however several problems in this implementation, which help explain, that even
when not executing any instructions, there are still around 50 TLB misses (see the empirical
data for this method in section A.4):

Variables & Functions. There are quite a number of local and global variables that need to
be accessed within the testing procedure. These also include the operating-system’s
page-tables filling a couple of entries in the TLB.

Undefined L2 Cache operation. The available documentation on the L2 TLB cache of the
processor is insufficient, as it does not explain under which circumstances a L1 TLB
entry will or will not replace a L2 TLB entry. Accordingly the detector tries its best
to fill the cache, but cannot be sure.

Interrupts. The detector already works with a hardware-priority of DISPATCH LEVEL, but
still occurring interrupts force execution of other code accessing other data.

The source code is provided with this document, but not printed here due to its complexity.

A.4 Empirical results

For being able to see the effectiveness of the detection methods, a couple of tests were run,
clearly showing that a running hypervisor can definitely be detected by these measures. The
tests are the same as presented in section A.3. The testing machine is running Windows
Vista 64 on an AMD Athlon(tm) 64 X2 Dual Core Processor. The test was conducted twice:
On a clean system (figure A.2) and on a system running Bluepill (figure A.3). The graphs

38

A.4 Empirical results

show the clock-cycles which the processor used during the execution of the RDMSR EFER
instruction (plus the overhead for acquiring the time using either RDTSC (read time-stamp
counter), RDTSCP (read time-stamp counter and process id) or RDMSR 10 (read time-
stamp counter using a RDMSR instruction). As has been explained in section 4.1.1, the
RDTSC instruction may be executed in non-linearized order and thus yield wrong results.
This is why the additional method of reading the TSC register using RDTSCP, which is a
linearizing instruction, is provided as well. For the counter-based detection, the graph shows
the number of increments which the counting thread was able to do, while the other one
is executing either RDMSR EFER or CPUID which are both likely to be trapped by the
hypervisor (the latter one is even forced to be trapped by VT-x specification).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

10

20

30

40

50

60

70

80

RDTSC

RDTSCP

MSR10

Counter: CPUID

Counter: RDMSR

Figure A.2: Empirical timing and counter results. Bluepill disabled.

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

0

1000

2000

3000

4000

5000

6000

7000

8000

RDTSC

RDTSCP

MSR10

Counter: CPUID

Counter: RDMSR

Figure A.3: Empirical timing and counter results. Bluepill enabled.

Since the available implementation of Bluepill has no more a working implementation of
RDTSC offset-cheating, this feature could unfortunately not be tested and evaluated into
the graphs. The huge differences within one row of acquired timing values when Bluepill is
running, suggests however that the task of providing a realistic approximate for the offset to
be subtracted is much harder then originally assumed (as already discussed in section 4.1.1)
and most likely a malicious hypervisor could be detected through more sophisticated timing
analysis anyways.

The only caveat for the counter-based detection is that it requires two CPUs or two cores

39

A Empirical Results

within the CPU. However, since this is already very much standard on modern processors
with support for virtualization extensions, this is only a small drawback. The value-range
in the graphs clearly indicates the reliable detection of an interception of the executed in-
structions.

For the TLB-based detection that was implemented, the results are not as clean and show
a greater disparity due to the reasons discussed in section A.3.2. Nevertheless the noise can

RDMSR EFER CPUID

45

50

55

60

65

70

75

80

Bluepilled

Clean

Figure A.4: Invalidated TLB entries.

be filtered by averaging a couple of conducted test’s results, although it is probably still
hard to find fixed values to distinguish a clean from an infected system. Since I lack access
to other systems I could compare the timing to, this cannot be evaluated right now.

The graph also indicates that when Bluepill is running RDMSR EFER has a lesser influ-
ence on the TLB than the CPUID instruction, which is confirmed by the results of the TLB
cache timing method, which works by using RDTSC to get the timing differences of TLB
accesses: At first data is accessed, so that the L1 TLB fills up, then this data is read again
this time measuring the access time. After a forced #VMEXIT some entries have been but
back into the L2 TLB cache. This introduces 1-3 extra cycles when fetching the L2 TLB
entry. Special care needs to be taken, that the actual data is stored in the L1 data cache,
otherwise a real memory hit occurs introducing an unpredictable amount of cycles render-
ing the method useless. This method has been verified to very reliable detect a running
hypervisor (see figure A.5). The values are constant and do not vary for a given Bluepill
implementation.

L1 TLB misses
Clean 2

Bluepilled: RDMSR EFER 8
Bluepilled: CPUID 16

Figure A.5: TLB misses in several setups

40

List of Figures

2.1 Type 1 malware [Rut06] . 4
2.2 Type 2 malware [Rut06] . 5
2.3 Type 3 malware [Rut06] . 6

3.1 Differences between traditional and thin hypervisors (based upon [PLF07]) . 9
3.2 Illustration of the moving-into-VM process [Rut07b] 11
3.3 Bluepill private page tables [Rut07b] . 13

4.1 Illustration of the L2 TLB organization [Rut07b] 18
4.2 Different physical addresses returned after hypervisor interception 19
4.3 Illustration of counter-based attack. [Rut07b] 22

5.1 DMA flaw in trusted hypervisors [Rut08] . 28

A.1 IOCTL-Codes for the testing framework . 36
A.2 Empirical timing and counter results. Bluepill disabled. 39
A.3 Empirical timing and counter results. Bluepill enabled. 39
A.4 Invalidated TLB entries. 40
A.5 TLB misses in several setups . 40

41

List of Figures

42

Bibliography

[Ada07] Keith Adams. BluePill detection in two easy steps, 2007. http://x86vmm.
blogspot.com/2007/07/bluepill-detection-in-two-easy-steps.html.

[AMD07a] AMD. AMD64 Architecture Programmer’s Manual; Volume 2: System Program-
ming, September 2007. http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24593.pdf.

[AMD07b] AMD. AMD64 Architecture Programmer’s Manual; Volume 3: General-
Purpose and System Instructions, September 2007. http://www.amd.com/
us-en/assets/content_type/white_papers_and_tech_docs/24594.pdf.

[AMD08] AMD. Revision Guide for AMD NPT Family 0Fh Processors, Febru-
ary 2008. http://www.amd.com/us-en/assets/content_type/white_papers_
and_tech_docs/33610.pdf, Revision 3.30.

[Bar07] Edgar Barbosa. Detecting Bluepill, 2007. http://rapidshare.com/files/
42452008/detection.rar.html, Presentation on SyScan Conference, 2007.

[BDK05] Michael Becher, Maximillian Dornseif, and Christian N. Klein. FireWire: all
your memory are belong to us, 2005. http://md.hudora.de/presentations/
firewire/2005-firewire-cansecwest.pdf, Presentation on CanSecWest Van-
couver, 2005.

[Bul08a] Yuriy Bulygin. CPU side-channels vs. virtualization rootkits: the good, the bad,
or the ugly, April 2008. http://www.c7zero.info/stuff/hyper-channel_
toorcon_seattle.ppt, Presentation on ToorCon, Seattle 2008.

[Bul08b] Yuriy Bulygin. Insane Detection of Insane Rootkits: Chipset Based Detection
and Removal of Virtualization Malware, August 2008. http://www.c7zero.
info/stuff/bh-usa-08-bulygin.ppt, Presentation on Black Hat Conference,
Vegas 2008.

[Chi] Ramesh Chinta. Kernel Mode Code Signing on Windows Vista
and Windows Longhorn Server. http://download.microsoft.
com/download/0/5/0/050a2d04-7432-4325-a5c3-dcbd54cf6695/
KernelModeCodeSigningonWindowsVistaandWindowsServerLonghorn.ppt.

[ESZ08] Shawn Embleton, Sherri Sparks, and Cliff Zou. SMM Rootkits: A New Breed of
OS Independent Malware, September 2008. http://www.eecs.ucf.edu/~czou/
research/SMM-Rootkits-Securecom08.pdf.

[Int07] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual; Volume
3B: System Programming Guide, Part 2, November 2007. http://download.
intel.com/design/processor/manuals/253669.pdf.

43

http://x86vmm.blogspot.com/2007/07/bluepill-detection-in-two-easy-steps.html
http://x86vmm.blogspot.com/2007/07/bluepill-detection-in-two-easy-steps.html
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24594.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24594.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
http://rapidshare.com/files/42452008/detection.rar.html
http://rapidshare.com/files/42452008/detection.rar.html
http://md.hudora.de/presentations/firewire/2005-firewire-cansecwest.pdf
http://md.hudora.de/presentations/firewire/2005-firewire-cansecwest.pdf
http://www.c7zero.info/stuff/hyper-channel_toorcon_seattle.ppt
http://www.c7zero.info/stuff/hyper-channel_toorcon_seattle.ppt
http://www.c7zero.info/stuff/bh-usa-08-bulygin.ppt
http://www.c7zero.info/stuff/bh-usa-08-bulygin.ppt
http://download.microsoft.com/download/0/5/0/050a2d04-7432-4325-a5c3-dcbd54cf6695/Kernel Mode Code Signing on Windows Vista and Windows Server Longhorn.ppt
http://download.microsoft.com/download/0/5/0/050a2d04-7432-4325-a5c3-dcbd54cf6695/Kernel Mode Code Signing on Windows Vista and Windows Server Longhorn.ppt
http://download.microsoft.com/download/0/5/0/050a2d04-7432-4325-a5c3-dcbd54cf6695/Kernel Mode Code Signing on Windows Vista and Windows Server Longhorn.ppt
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://download.intel.com/design/processor/manuals/253669.pdf
http://download.intel.com/design/processor/manuals/253669.pdf

Bibliography

[Joh06] Ken Johnson. Subverting PatchGuard Version 2. December 2006. http://www.
uninformed.org/?v=6&a=1&t=pdf.

[Kle] Tobias Klein. Trapkit: Scoopy Doo – VMware Fingerprint Suite. http://www.
trapkit.de/research/vmm/scoopydoo/index.html; accessed Apr 21, 2008.

[KWC+06] Samuel T. King, Yi-Min Wang, Peter M. Chen, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch. SubVirt: Implementing malware with virtual machines,
May 2006. http://www.eecs.umich.edu/~pmchen/papers/king06.pdf, Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy.

[Mic] Microsoft Corporation. Patching Policy for x64-Based Systems. http://www.
microsoft.com/whdc/driver/kernel/64bitPatching.mspx; accessed Jul 26,
2008.

[MJ05] Matt Miller and Ken Johnson. Bypassing PatchGuard on Windows x64. De-
cember 2005. http://www.uninformed.org/?v=3&a=3&t=pdf.

[MY07] Michael Myers and Stephen Youndt. An Introduction to Hardware-Assisted Vir-
tual Machine (HVM) Rootkits. August 2007. http://www.crucialsecurity.
com/documents/hvmrootkits.pdf.

[One03] Walter Oney. Programming the Microsoft Windows Driver Model, Second Edi-
tion. Microsoft Press, Redmond, WA, USA, 2003.

[PLF07] Thomas Ptacek, Nate Lawson, and Peter Ferrie. Don’t Tell Joanna, The
Virtualized Rootkit Is Dead, August 2007. https://www.blackhat.com/
presentations/bh-usa-07/Ptacek_Goldsmith_and_Lawson/Presentation/
bh-usa-07-ptacek_goldsmith_and_lawson.pdf, Presentation on Black Hat
Conference, Vegas 2007.

[QS06] Danny Quist and Val Smith. Detecting the Presence of Virtual Machines Using
the Local Data Table. March 2006. http://www.offensivecomputing.net/
files/active/0/vm.pdf.

[RT06] Joanna Rutkowska and Alexander Tereshkin. Subverting Vista Kernel For Fun
And Profit, 2006. http://www.blackhat.com/presentations/bh-usa-06/
BH-US-06-Rutkowska.pdf, Presentation on Black Hat Conference, Vegas 2006.

[RT08] Joanna Rutkowska and Alexander Tereshkin. Bluepilling the Xen Hypervisor,
August 2008. http://invisiblethingslab.com/bh08/part3.pdf, Presenta-
tion on Black Hat Conference, Vegas 2008.

[Rut04a] Joanna Rutkowska. Red Pill. . . or how to detect VMM using (almost) one CPU
instruction. November 2004. http://invisiblethings.org/papers/redpill.
html.

[Rut04b] Joanna Rutkowska. Security Challenges in Virtualized Enviroments,
December 2004. http://www.ccc.de/congress/2004/fahrplan/files/
223-passive-covert-channels-linux.pdf, Presentation on Chaos Commu-
nication Congress, Berlin 2004.

44

http://www.uninformed.org/?v=6&a=1&t=pdf
http://www.uninformed.org/?v=6&a=1&t=pdf
http://www.trapkit.de/research/vmm/scoopydoo/index.html
http://www.trapkit.de/research/vmm/scoopydoo/index.html
http://www.eecs.umich.edu/~pmchen/papers/king06.pdf
http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx
http://www.microsoft.com/whdc/driver/kernel/64bitPatching.mspx
http://www.uninformed.org/?v=3&a=3&t=pdf
http://www.crucialsecurity.com/documents/hvmrootkits.pdf
http://www.crucialsecurity.com/documents/hvmrootkits.pdf
https://www.blackhat.com/presentations/bh-usa-07/Ptacek_Goldsmith_and_Lawson/Presentation/bh-usa-07-ptacek_goldsmith_and_lawson.pdf
https://www.blackhat.com/presentations/bh-usa-07/Ptacek_Goldsmith_and_Lawson/Presentation/bh-usa-07-ptacek_goldsmith_and_lawson.pdf
https://www.blackhat.com/presentations/bh-usa-07/Ptacek_Goldsmith_and_Lawson/Presentation/bh-usa-07-ptacek_goldsmith_and_lawson.pdf
http://www.offensivecomputing.net/files/active/0/vm.pdf
http://www.offensivecomputing.net/files/active/0/vm.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://invisiblethingslab.com/bh08/part3.pdf
http://invisiblethings.org/papers/redpill.html
http://invisiblethings.org/papers/redpill.html
http://www.ccc.de/congress/2004/fahrplan/files/223-passive-covert-channels-linux.pdf
http://www.ccc.de/congress/2004/fahrplan/files/223-passive-covert-channels-linux.pdf

Bibliography

[Rut06] Joanna Rutkowska. Introducing Stealth Malware Taxonomy. November 2006.
http://www.invisiblethings.org/papers/malware-taxonomy.pdf.

[Rut07a] Joanna Rutkowska. Beyond The CPU: Defeating Hardware Based RAM
Acquisition, February 2007. http://www.invisiblethings.org/papers/
cheating-hardware-memory-acquisition-updated.ppt, Presentation on
Black Hat Conference, DC 2007.

[Rut07b] Joanna Rutkowska. IsGameOver(), Anyone?, August 2007. https:
//www.blackhat.com/presentations/bh-usa-07/Rutkowska/Presentation/
bh-usa-07-rutkowska.pdf, Presentation on Black Hat Conference, Vegas
2007.

[Rut08] Joanna Rutkowska. Security Challenges in Virtualized Enviroments, April
2008. http://invisiblethings.org/papers/Security%20Challanges%20in%
20Virtualized%20Enviroments%20-%20RSA2008.pdf, Presentation on RSA
Conference, San Francisco 2008.

[RW08] Joanna Rutkowska and Rafa l Wojtczuk. Preventing and Detecting Xen Hypervi-
sor Subversions, August 2008. http://invisiblethingslab.com/bh08/part2.
pdf, Presentation on Black Hat Conference, Vegas 2008.

[SB05] Sherri Sparks and Jamie Butler. Shadow Walker, Raising The Bar
For Rootkit Detection, 2005. http://www.blackhat.com/presentations/
bh-jp-05/bh-jp-05-sparks-butler.pdf, Presentation on Black Hat Confer-
ence, Japan 2005.

[Tho84] Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–763,
1984. http://cm.bell-labs.com/who/ken/trust.html.

45

http://www.invisiblethings.org/papers/malware-taxonomy.pdf
http://www.invisiblethings.org/papers/cheating-hardware-memory-acquisition-updated.ppt
http://www.invisiblethings.org/papers/cheating-hardware-memory-acquisition-updated.ppt
https://www.blackhat.com/presentations/bh-usa-07/Rutkowska/Presentation/bh-usa-07-rutkowska.pdf
https://www.blackhat.com/presentations/bh-usa-07/Rutkowska/Presentation/bh-usa-07-rutkowska.pdf
https://www.blackhat.com/presentations/bh-usa-07/Rutkowska/Presentation/bh-usa-07-rutkowska.pdf
http://invisiblethings.org/papers/Security%20Challanges%20in%20Virtualized%20Enviroments%20-%20RSA2008.pdf
http://invisiblethings.org/papers/Security%20Challanges%20in%20Virtualized%20Enviroments%20-%20RSA2008.pdf
http://invisiblethingslab.com/bh08/part2.pdf
http://invisiblethingslab.com/bh08/part2.pdf
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
http://cm.bell-labs.com/who/ken/trust.html

	Introduction
	Prerequisites
	A rootkit taxonomy
	Type 0 malware
	Type 1 malware
	Type 2 malware
	Type 3 malware

	Mass rootkits vs. targeted attacks

	HVM rootkits
	Basic Principles
	Implementing a thin hypervisor
	Abusing hardware virtualization for malware

	Technical Implementation Details
	Moving the operating system into the virtual machine
	Further hypervisor tasks
	Details on Bluepill

	On detecting HVM rootkits
	Virtualization detection
	Timing Attacks
	CPU-specific behaviour
	Profiling CPU resource discrepancies
	Counter-based detection
	Side Channel Attacks with nested virtualization

	Explicitly detecting a malicious hypervisor
	Signature Detection
	Hardware-based memory acquisitions
	“Insane Detection of Insane Rootkits”

	Passive detection
	Removal of a malicous hypervisor

	On preventing HVM rootkits
	Hardware supported authorization
	BIOS support
	Unlockable virtualization
	TPM support

	Installing a trusted hypervisor first

	Conclusions and Prospective
	Threat-Evaluation
	Undetectable Stealth Rootkits
	Applications for thin hypervisors
	Further tasks / research

	Empirical Results
	Preparing Windows for home-brew drivers
	Running Bluepill
	Verifying Bluepill’s presence in a debug environment

	Own Developments
	Implementation of the counter-based detection
	Implementation of TLB-based detection

	Empirical results

	List of Figures
	Bibliography

