
1

High-performance aspects in virtualized
infrastructures

Vitalian A. Danciu, Nils gentschen Felde, Dieter Kranzlmüller, Tobias Lindinger
Munich Network Management Team

Ludwig-Maximilians-Universität München
Oettingenstr. 67, D-80538 München

{danciu,felde,kranzlm,lindinge}@nm.ifi.lmu.de

Abstract—In this paper we analyse the suitability of comput-
ing clouds, i.e. large-scale virtualized infrastructures for high-
performance applications that are normally executed on spe-
cialised clusters or supercomputers. We classify such applications
according to their requirements on different system components
and present measurements of virtualization software overhead for
these components. Based on the results, we discuss cloud-tolerant
problems and address surprising performance effects observed
in different hypervisors.

I. MOTIVATION

Today, while Peta-FLOP systems are being installed around
the globe, the planning for exascale systems is already under-
way, with such systems expected around 2019. Such high-end
computing (HEC) systems are projected to contain in excess of
1000, 000, 000 CPU cores and consequently present enormous
challenges because of their dramatically increased parallelism
and complexity. The cost for acquiring and operating such a
system through its life-time is accordingly exuberant. Clearly,
this development will encounter hard financial (if not techni-
cal) limits for publicly funded systems.
At the same time, computing power is being offered as a
commodity provisioned by virtualized infrastructures operated
in a cloud model. Provided this emergent business model pans
out, it does indeed make sense to explore the option of solving
computing problems hitherto reserved for HEC systems on the
growing platform of offerings.
On the other hand, host virtualization as a technology exhibits
properties that may be instrumental to the management and
operation of very large scale systems. Virtual machines (VMs)
are already being used successfully as a base for the execution
of programs in massive HEC clusters. Such use of virtualiza-
tion techniques in HEC poses interesting research questions. In
this paper, however, we will focus on the formerly mentioned
issue: the use of virtualized environments for solving HEC
problems.

II. BACKGROUND AND RELATED WORK

Current roadmaps [7] project one billion cores in exascale
systems, four orders of magnitude more parallelism than the
approximately 100, 000 cores in current petascale systems.
This vastly increased parallelism presents what appears to

be an even greater challenge for both systems software and
application software design.
The use of heterogeneous systems, i.e. a combination of tradi-
tional general-purpose cores with GPUs (graphics processing
units) and accelerators, will further complicate applications,
algorithms and associated programming models. The increased
component count, power and cooling requirements of these
systems will present significant resilience and fault tolerance
challenges. Finally, the move to radically different system
architectures raises important questions about legacy appli-
cations and system software that, viewed globally, comprise
financial investments in the range of the budgets of small
countries.
Given the physical size and raw component count in an exas-
cale machine, fault tolerance may very well be a show stopper.
The solution can no longer be the traditional checkpoint-
restart, but instead built-in system and application resilience.
The decoupling of the physical machine from the program
run by means of a virtualization layer relocates fault, config-
uration, accounting, performance and security (FCAPS) man-
agement functions to dynamic relocatable entities—the VMs
in cloud-like environments. In addition to being able to com-
pensate physical failures by means of migration techniques,
a virtualization layer enables dynamic and fine grained parti-
tioning of a cluster at run-time. More efficient distributions of
virtual machines, load balancing and even ad hoc tapping into
spare capacity of other data centres are conceivable. At the
same time, a higher security baseline is provided implicitly
as a consequence of sandboxing applications within their own
VM.
Given these facts and projections, it might seem peculiar that
virtualization has not been embraced at once in the domain
of high-end, high-performance computing. The single most
important issue that keeps virtualization out of the TOP500 list
is the performance overhead introduced by the virtualization
facility, e.g. the hypervisor.
It is this overhead that we examine in this paper, from both
qualitative and quantitative perspectives.

A. Related work

The issue of performance inherent to host virtualization has
indeed been pointed out early on; in particular, the role



2

of I/O in performance considerations has been noted [3].
Examinations of performance have been carried out for some
hypervisors (Xen is certainly a preferred candidate, probably
due to being released as Free Software, with its sources
readily available)[4], [13], and opportunities for improve-
ment have been pointed out with respect to CPU and I/O
performance[12], [2].
In contrast, this paper does not focus on a specific virtual-
ization technology instance, but instead evaluates VM-based
computing per se for use in high-performance and high-
throughput applications.

B. Structure of this paper

Section III outlines the requirements on virtualization use in
High-End Computing (HEC) based on the common problem
classes in parallel computing. Based on these requirements,
we select measurement setups and present the results of
those measurements in Section IV. We interpret these results
in Section V to determine the suitability of virtualization
facilities for different computational problems and summarise
our conclusions in Section VI.

III. PERFORMANCE IMPACT FACTORS

The goal of this work is to determine the applicability
of large scale virtualized infrastructures, such as clouds, to
high-performance computing problems. Requirements on the
performance profile of such infrastructures are consequently
derived from HEC problems in the following.

A. Problem classes

The problems addressed in our analysis require massive paral-
lel execution in general, yet different classes of computational
problems impose different requirements on the systems they
are computed on, in terms of component performance. We
differentiate roughly between a High-Performance Comput-
ing (HPC) and High-Throughput Computing (HTC) problem
classes. Table I characterises these problem classes according
to architectural criteria.
a) HPC problems: are tightly coupled and need to transmit
intermediate results between nodes frequently. Hence, the
performance of their computation is highly dependent on
locality and on the characteristics of a common memory and/or
the network interconnecting computing nodes.
b) HTC problems: are loosely coupled computations that
include the class of so called embarrassingly parallel problems.
Computations are often organised in tasks within a workflow
and/or pipelined through a hierarchy of nodes. The perfor-
mance of their computation is determined primarily by the
raw CPU power available.
In general, we can thus identify several impact factors that
have relevance to both VM-based computing and to the HEC
problems delineated:

• Effective CPU performance and support for special in-
struction sets, especially extensions supporting host vir-
tualization [15].

• Memory organisation (addressing scheme, size, latency,
“jitter”)

• Latency and throughput of the interconnect.

c) Job management.: Virtualization technology affords sev-
eral novel mechanisms of job (read: VM) control previously
unavailable in purely physical computing environments. How-
ever, these mechanisms will influence job execution at run-
time in a positive or negative manner: Job submission (as
VM images) allows (but also forces) a-priori specification of
VM resource requirements known at deployment or relocation
time. The migration of VMs across network induces a change
in locality that implies higher or lower interconnect latencies.
Changes in resource assignment may result in higher or lower
performance, depending on the program run.

B. Summary of requirements

In order to be suitable for all HEC problems, an execution
environment must meet the following requirements simultane-
ously:

1) High aggregate CPU performance
2) Low interconnect latency
3) High interconnect transmission capacity
4) Contiguous memory addressing
5) Uniform latency of memory access
6) Conservation of locality once program replicas have

been deployed
7) Predictable assignment of resources
8) Fixed assignment of resources after program replicas

have been deployed

C. Benchmarking the cloud

Due to the sheer amount of processing time, the program code
of HEC applications is optimised for specific architectures.
Hence, for good results, knowledge about hardware character-
istics is necessary at design time. With specialised clusters or
supercomputers such knowledge is available beforehand and
allows adaptation of program code for execution on a specific
installation, often even before that installation is deployed.
In contrast, the opaque nature of clouds obviates the acquisi-
tion of such knowledge deliberately. The type of virtualization,
i.e. para-virtualization, full virtualization or OS virtualization,
constitutes a determinant to performance overhead. Due to
the lack of prior knowledge of the hypervisor class in use,
we determine virtualization overhead by virtual component
(CPU, memory, network or disk), as these are virtualized using
a single virtualization technique instead mix of techniques
employed to create a VM.
The degree of fulfilment of some of the requirements is
pre-determined by the business model of compute clouds:
they consist of commodity server machines interconnected by
means of commodity network technology. They cannot realise
a contiguous, uniform-latency addressing scheme due to the
isolation property of VMs. Locality may be sacrificed for the
sake of load balancing, and resource assignment might change
for the same reason.



3

Criterion High-Performance High-Throughput
coupling tight loose

CPU impact co-determinant critical

interconnect impact critical less

RAM addressing sensitive; prefers contiguous, uniform latency addressing less sensitive

program structures inter-communicating program replicas workflows; pipelining of computing tasks

Examples fluid dynamics problems, crash codes high-energy physics (e.g. CERN LHC experiments), gen-
eral parameter variation studies

Table I: Characterisation of problem classes

Thus, we consider the remaining two dimensions of perfor-
mance in comparison to the performance of a native OS:

1) The overhead of the virtualization facility with respect
to CPU and interconnect.

2) A representative set of virtualization facility products
(hypervisors) that employ different virtualization strate-
gies.

IV. MEASUREMENTS

The measurements presented in this paper constitute an excerpt
of a larger sequence of measurements (see [10]) that would
overtax the available space. Thus, we will focus on the
performance overhead of CPU and the throughput of network
devices as the determining components for HPC and HTC
problems. This section will present our approach to create
a benchmark suite and present the results obtained when
running the benchmarks on several of the common hypervisor
implementations including Xen 3.2, VMware ESXi 3.5, MS
Hyper-V and Virtuozzo 4 / OpenVZ.

A. Designing a performance measurement suite

When running benchmarks on virtual machines one has to
take into account mainly two issues that do not arise when the
same benchmark is executed on a physical machine. Firstly,
results of virtual machines cannot be interpreted stand-alone,
but rather must be compared to a reasonable result obtained
in an identical physical environment. Secondly, measurements
of time within a virtual machine are error prone due to several
layers of independent scheduling. While attempts to synchro-
nise clocks of virtual and physical machines are underway [8],
[14], the large number of eligible counters requires a careful
selection of those best suited for the desired benchmark. This
implies that a benchmark executed on a virtual machine should
either be proven to yield correct results or its source code must
be obtainable to verify (and if necessary, to fix) timing related
issues. In addition, we require the benchmarks selected to be
part of our test suite to be executable on both Windows and
Linux and on both 32-bit and 64-bit platforms.
1) CPU: We have chosen the Linpack benchmark [9] to be
the benchmark for CPU-related measurements. It fulfils the
requirements stated above and is well known in the HEC
community as the benchmark ranking the TOP500 list of
supercomputers. Unfortunately, the time measurement used

by the Linpack benchmark is based on the wall clock time
of the application which is not even defined properly for
virtual machines. Consequently, we extended the benchmark
by adding an external clock updated over UDP instead of
asking the internal clock counter. This introduces a delay
compared to the original meassurement, but since the same
benchmark is used on a physical machine one can compare the
results. We ran the modified Linpack on different matrix-sizes
beginning from 1000x1000 up to 8000x8000 measuring the
absolute run-times of each pass. We aggregated these values
to compute the average of all time measurements.
2) Network: For our networking tests we selected Iometer
[6] which can fulfil our requirements and can be used without
further changes. It consists of two components: the dynamo
client, which is responsible to produce the network load, and
the Iometer control instance, which realises time measure-
ments. Placing the latter component on a physical machine
effectively eliminates time-related measurement problems. To
eliminate such effects due to network message sizes, we
performed the same experiment using different segment sizes
between 1 kB and 32 MB to measure the throughput.

B. Applying the test suite

Single runs of Linpack and Iometer with one benchmark in-
stance in a single active virtual machine yield efficiencies close
to 100% across hypervisors, client platforms and operating
systems. Thus, we only present the more interesting concurrent
measurements. Sample results showing the Linpack runtime
for a physical machine running Ubuntu Linux (kernel 2.6.18)
as well as corresponding Linux VMs that are virtualized
using the four different hypervisor products are illustrated in
Figure 1. We encountered an anomaly in the doubled run-time
of Linpack on Windows, as compared to the same tests on
Linux. We attribute this to the treatment of different segment
sizes in Windows’s UDP stack, as this behaviour could not
be replicated with the unmodified version of Linpack. The
behaviour of the Xen virtual machine is even better then the
result of the physical maschine. We believe this to be caused
by larger page sizes within the hypervisor leading to a smaller
number of page faults.
1) Concurrent CPU tests: On our two-core machine, we ran
the adapted Linpack benchmark in one, two and three concur-
rent virtual machines. As the underlying physical system had
only two CPU-cores to bind virtual machines to, we expected



4

400 00
500,00
600,00

ec
on

ds

200,00
300,00
400,00
500,00
600,00

m
e 
in
 s
ec
on

ds

0,00
100,00
200,00
300,00
400,00
500,00
600,00

Ru
n‐
ti
m
e 
in
 s
ec
on

ds

Physical Linux 450,58

0,00
100,00
200,00
300,00
400,00
500,00
600,00

Ru
n‐
ti
m
e 
in
 s
ec
on

ds

Physical Linux 450,58

Xen Para 448,79

OpenVZ 452,53

0,00
100,00
200,00
300,00
400,00
500,00
600,00

Ru
n‐
ti
m
e 
in
 s
ec
on

ds

Physical Linux 450,58

Xen Para 448,79

OpenVZ 452,53

MS Hyper‐V 485,76

VMware ESXi 472,00

0,00
100,00
200,00
300,00
400,00
500,00
600,00

Ru
n‐
ti
m
e 
in
 s
ec
on

ds

Physical Linux 450,58

Xen Para 448,79

OpenVZ 452,53

MS Hyper‐V 485,76

VMware ESXi 472,00

0,00
100,00
200,00
300,00
400,00
500,00
600,00

Ru
n‐
ti
m
e 
in
 s
ec
on

ds

Physical Linux 450,58

Xen Para 448,79

OpenVZ 452,53

MS Hyper‐V 485,76

VMware ESXi 472,00

0,00
100,00
200,00
300,00
400,00
500,00
600,00

Ru
n‐
ti
m
e 
in
 s
ec
on

ds

(a) Absolute run-time

Physical Linux 100,00%

X P

0,00%
20,00%
40,00%
60,00%
80,00%

100,00%
120,00%

Ef
fe
ct
iv
en

es
s

Physical Linux 100,00%

Xen Para 99,60%

OpenVZ 100,43%

MS Hyper‐V 107,81%

VWware ESXi 104,75%

0,00%
20,00%
40,00%
60,00%
80,00%

100,00%
120,00%

Ef
fe
ct
iv
en

es
s

(b) Relative run-time

Figure 1: Effectiveness of current hypervisors (Linpack)

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

one VM two VMs three VMs

VM3 214,2 293,55 451,96

VM2 295,59 452,52

VM1 455,63

0

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

(a) Xen

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

one VM two VMs three VMs

VM3 486 487 938

VM2 472 470

VM1 939

0

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

(b) Virtuozzo

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

one VM two VMs three VMs

VM3 466 481 728

VM2 481 739

VM1 728

0

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

(c) Hyper-V

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

one VM two VMs three VMs

VM3 213,21 331,18 519,7

VM2 333,2 518,74

VM1 524,77

0

500

1.000

1.500

2.000

2.500

R
u
n
‐t
im

e
 in

 s
e
co
n
d
s

(d) ESXi

Figure 2: Concurrent CPU runs



5

the most significant results in the category of running three
instances of Linpack simultaneously. The results, shown in
Figure 2 exhibit a linear increase of run-time in relation to
the amount of machines and therefore the amount of Linpack
instances in all scenarios except when using Virtuozzo as a
hypervisor. Virtuozzo seems to implement a strict binding of
virtual machines to physical cores since one machine finishes
calculation twice as fast than the other ones. While this
implementation is a good idea to make most efficient use of
caches, it is prone to distribute CPU time in an unfair manner.

2) Concurrent network I/O: This test measures the network
throughput (both reading from and writing to the network) of
one to three virtual machines executed on the same physical
host communicating with a second physical host. The virtual
machines constitute sending or receiving entities. During the
tests packet sizes were varied. The results are illustrated in
Figures 3, 4, 5 and 6.
We observed an interesting effect with respect to read vs.
write operations according to the VM clock. While clients
(e.g. a benchmark program) can only send data when the VM
is scheduled to be active, reception of data from the network is
assured even while the VM is scheduled to be inactive. Thus,
the VMs time frame for the reception of data may be smaller
than real time.

3) Locality of communication peers: Inter-communicating
VMs can be located on the same physical machine, or on dif-
ferent physical machines. We did not measure communication
between two virtual machines located on different physical
hosts, as the receiving time-frame anomaly due to scheduling
effects would appear in both directions. Instead, we interpret
the results in comparison with the former experiment, where
a VM sends or receives data from the physical network. In
this symmetric experimental setup we need not distinguish
between sending and receiving scenarios as they are obviously
equivalent. We can see a significant increase of the throughput
observed in the virtual scenario across all hypervisors with the
exception Virtuozzo. We determined this effect to be due to
Virtuozzo’s network driver implementation. The quantitative
results are shown in Figure 7.

V. DISCUSSION

Based on the measurements of the efficience of single virtual
components, we can conclude that the overhead introduced
by the virtualization layer is relatively small and will be ac-
ceptable against the background of the administrative benefits
gained by the use of host virtualization in large-scale scenarios.
However, our measurements have revealed several non-linear
aspects of virtual component performance, that are due to
multiple, decoupled scheduling procedures. As some of these
effects entail a high load of the CPU during network transmis-
sions, they cannot be discounted when assessing the suitability
of host virtualization for use in High-End Computing. In the
following, we discuss our findings with respect to the HEC
problem classes identified in Section III.

A. Observations

Our experiments suggest that modern virtualization approaches
can be highly efficient in abstracting single virtual components
(such as a virtual CPU, RAM or NIC). Within limitations, the
VMs themselves can be considered to be very efficient against
the baseline of the physical machine supporting it. Virtual
component types are not equally efficient regarding costs,
however. Specifically, virtualizing I/O-components such as net-
work interfaces or host-bus adapters entails emulation of their
properties in software; thus, creating virtual I/O-components
may be highly compute intensive. The introduction of hard-
ware support for I/O-virtualization may lessen this impact in
the domain of single physical machines [5], but an actual
improvement would naturally require corresponding end-to-
end transmission capacity on the interconnecting network. We
consider it highly improbable that IT-installations intended
for cloud computing will be equipped with interconnects
featuring latencies and throughput characteristics as demanded
by tightly coupled HPC applications, as such features may not
be marketable to non-HPC customers.
This limitation applies to a much lesser extent to the loosely
coupled HTC problems; while computing nodes will commu-
nicate occasionally, program execution speed is determined to
a much higher extent by the performance of virtual CPUs,
and in some main memory-intensive cases by the speed of the
CPU-memory connectors. As our experiments show, virtual
CPUs are efficiently abstracted across virtualization software
brands, and the impact of the memory access latencies is
highly dependent on the locality within the application pro-
grams.
Virtualized infrastructures, by their very nature, do not provide
contiguous memory address space. This does not preclude
effective execution of parallel programs, but does imply the
use of message passing libraries, such as the Message Passing
Interface (MPI) [1], which are optimized for most effective
communications between peers using the shortest path avail-
able. However, depending on the construction of the cluster,
the network topology may change (unexpectedly, for MPI) due
to live migration of VMs and “confuse” this highly optimised
message passing.
Where usable, virtualization will enable flexible management
of resources and a high degree of automatisation; this is
fortunate, as a flexible management will become an essen-
tial aspect in emerging HEC environments due to the high
amounts of resources, e.g. CPUs in a magnitude greater than
106, committed to these calculations will not be manageable
manually as before. Another aspect to watch, while operating
a high performance cloud cluster, is the overcommitment of
resources. This will create large performance penalties due
to the overhead created by scheduling of virtual machines and
especially in consequence due to the loss of locality and cache
poisoning issues.

B. Verdict

We conclude that it is indeed possible to virtualize loosely
coupled, HTC problems in cloud environments, but that such



6

one VM two VMs three VMs
0

10
20
30
40
50
60
70

h
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 20,85

VM 2 30,85 20,46

VM 1 60,00 30,40 20,27

0
10
20
30
40
50
60
70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(a) Receive data from network

VM t VM th VM
0
10
20
30
40
50
60
70

h
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 17,17

VM 2 25,89 17,03

VM 1 49,26 25,41 16,93

0
10
20
30
40
50
60
70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(b) Send data to network

Figure 3: Concurrent I/O on network - Xen

VM t VM th VM
0
10
20
30
40
50
60
70

ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 3,77

VM 2 5,65 3,77

VM 1 60,71 5,65 3,77

0
10
20
30
40
50
60
70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(a) Receive data from network

VM t VM th VM
0
10
20
30
40
50
60
70

ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 17,51

VM 2 24,44 17,53

VM 1 51,88 25,29 17,51

0
10
20
30
40
50
60
70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(b) Send data to network

Figure 4: Concurrent I/O on network - Virtuozzo

0
10
20
30
40
50
60
70

h
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 3,77

VM 2 31,97 3,77

VM 1 63,98 32,84 3,77

0
10
20
30
40
50
60
70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(a) Receive data from network

VM t VM th VM
0

10
20
30
40
50
60
70

h
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 17,61

VM 2 25,94 17,61

VM 1 51,79 25,94 17,61

0
10
20
30
40
50
60
70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(b) Send data to network

Figure 5: Concurrent I/O on network - Hyper-V



7

0

10

20

30

40

50

60

70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 21,44

VM 2 22,87 21,31

VM 1 62,26 22,87 21,33

0

10

20

30

40

50

60

70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(a) Receive data from network

0

10

20

30

40

50

60

70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

one VM two VMs three VMs

VM 3 15,36

VM 2 30,55 15,34

VM 1 46,02 30,24 15,31

0

10

20

30

40

50

60

70

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(b) Send data to network

Figure 6: Concurrent I/O on network - ESXi

50,00

100,00

150,00

200,00

250,00

o
u
gh
p
u
t 
in
 M

B
yt
e
/s

write read

VM to PM 49,26 60,00

VM to VM 233,85 210,78

0,00

50,00

100,00

150,00

200,00

250,00

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(a) Xen

50,00

100,00

150,00

200,00

250,00

o
u
gh
p
u
t 
in
 M

B
yt
e
/s

write read

VM to PM 51,88 60,71

VM to VM 12,23 9,26

0,00

50,00

100,00

150,00

200,00

250,00

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(b) Virtuozzo

50,00

100,00

150,00

200,00

250,00

o
u
gh
p
u
t 
in
 M

B
yt
e
/s

write read

VM to PM 51,79 63,98

VM to VM 108,29 112,23

0,00

50,00

100,00

150,00

200,00

250,00

Th
ro
u
gh
p
u
t 
in
 M

B
yt
e
/s

(c) Hyper-V

250,00

200,00

250,00

By
te
/s

100,00

150,00

200,00

250,00

ut
 in

 M
By

te
/s

50,00

100,00

150,00

200,00

250,00

ug
hp

ut
 in

 M
By

te
/s

write read
0,00

50,00

100,00

150,00

200,00

250,00

Th
ro
ug
hp

ut
 in

 M
By

te
/s

write read

VM to PM 46,02 62,26

VM to VM 129,31 129,01

0,00

50,00

100,00

150,00

200,00

250,00

Th
ro
ug
hp

ut
 in

 M
By

te
/s

write read

VM to PM 46,02 62,26

VM to VM 129,31 129,01

0,00

50,00

100,00

150,00

200,00

250,00

Th
ro
ug
hp

ut
 in

 M
By

te
/s

write read

VM to PM 46,02 62,26

VM to VM 129,31 129,01

0,00

50,00

100,00

150,00

200,00

250,00

Th
ro
ug
hp

ut
 in

 M
By

te
/s

(d) ESXi

Figure 7: Physical vs. virtual communication peers



8

environments are unsuitable for the execution of tightly cou-
pled parallel programs due to the overhead incurred by the
virtualization of I/O-components and the requirements on the
network interconnecting the computing nodes for up-to-date
virtualization techniques.

VI. CONCLUSIONS

The success of virtualization technology in general, and its
deployment in cloud installation in particular, are driven by
novel, flexible provisioning and load distribution options. The
decoupling of machine images from the actual physical hard-
ware allows flexible assignment of resources in the same man-
ner as it is provided by specialised HEC middleware facilities.
At the same time, a virtualized environment can prove more
tolerant against localised faults, and it can be reconfigured
without service interruption, to allow maintenance. However,
the architecture of virtualized infrastructures and the manner
in which they are loaded lead to performance bottlenecks
being exhibited by common PC-like machine architectures. On
one hand, “performance leaks” occur due to the virtualization
software layer, on the the other hand, the co-location of
machines may overtax subsystems such as I/O.
In this paper, we have presented performance measurements
of VMs to determine their suitability to support HEC applica-
tions. To avoid having to extrapolate from specific computa-
tional problems, we have adapted standard HEC benchmarks
(e.g. Linpack) to be usable in a virtualized environment and
measured the performance index of separate and aggregate
virtual system components.
Our results indicate that, while some computation problems
are well suited for execution on VM environments, e.g. in
cloud offerings, other problem classes suffer from perfor-
mance issues induced by the aforementioned bottlenecks.
High-Throughput Computing problems, as encountered in the
particle physics appear suitable to be computed on large sets
of VMs; in contrast, High-Performance Computing (HPC)
problems as in fluid mechanics simulations appear problematic
due to their need to pass results quickly between comput-
ing nodes. In addition, the flexibility of VMs in terms of
topological arrangement and resource assignment (through
migration and resource pool concepts) forces programs to be
constructed without assumptions with regard to locality (and
thus latencies) or node resources. Thus, HEC applications are
computable on virtualized, or cloud, infrastructures only to
limited degrees.

A. Outlook on future research

Computability of the problematic HPC applications can be
enhanced either by taking into account the characteristics
of virtualized environments at development time, or by de-
manding from the virtualization platform that it take into
account locality requirements of the applications. Either of
these strategies may lead to the enlargement of the problem
space tolerant to VM-based computing.
Another interesting and related field is the introduction of host
virtualization in specialised HEC environments, in order to

make use of the resource management capabilities associated
with VMs while retaining the hardware characteristics neces-
sary for tightly coupled problems. This entails the operation
of virtualization facilities “out of their depth” in massively
parallel environments
As the number of virtualization software brands is small
compared to the plethora of programs in the HEC domain, the
second avenue seems more promising for practise; in addition
to primitive functions of hypervisors already supporting such
functions, locality control appears to be a technique suitable
for problems outside the HEC domain, as well.

ACKNOWLEDGMENT

The authors wish to thank the members of the Munich
Network Management Team (MNM Team) for helpful dis-
cussions and valuable comments on previous versions of
this paper. The MNM Team directed by Prof. Dr. Dieter
Kranzlmüller and Prof. Dr. Heinz-Gerd Hegering is a group
of researchers at Ludwig-Maximilians-Universität München,
Technische Universität München, the University of the Federal
Armed Forces and the Leibniz Supercomputing Centre of the
Bavarian Academy of Science. http://www.mnm-team.org

REFERENCES

[1] MPI: A Message-Passing Interface Standard – Version 2.2. http://www.
mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf, September 2009.

[2] Matthew Arnold, Adam Welc, and V. T. Rajan. Improving virtual
machine performance using a cross-run profile repository. SIGPLAN
Not., 40(10):297–311, 2005.

[3] Peter M. Chen and Brian D. Noble. When virtual is better than real.
Hot Topics in Operating Systems, Workshop on, 0:0133, 2001.

[4] Ludmila Cherkasova and Rob Gardner. Measuring cpu overhead for i/o
processing in the xen virtual machine monitor. In ATEC ’05: Proceed-
ings of the annual conference on USENIX Annual Technical Conference,
pages 24–24, Berkeley, CA, USA, 2005. USENIX Association.

[5] Vitalian A. Danciu and Martin G. Metzker. On I/O virtualization
management. In Proceedings of the 3rd International DMTF Workshop
on Systems and Virtualization Management, Wuhan, China, September
2009. Distributed Management Task Force.

[6] Daniel Scheibli and Ming Zhang. Iometer Project, September 2009.
[7] Jack Dongarra et al. International exascale software project roadmap

(draft 0.93), November 2009.
[8] Scott Drummonds. Time-based Measurements in Virtual Machines, May

2008.
[9] Jack Dongarra, Jim Bunch, Cleve Moler, and Gilbert Stewart. Linpack

Benchmark, June 2010.
[10] Tobias Lindinger. Optimierung des Wirkungsgrades virtueller Infras-

trukturen. Dissertation, Ludwig–Maximilians–Universität München,
February 2010.

[11] Bruce McCready, Kenneth C. Barr, and Kiran Tati. ESX Server Best
Practices for Performance, September 2008.

[12] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. Optimizing
network virtualization in xen. In ATEC ’06: Proceedings of the annual
conference on USENIX ’06 Annual Technical Conference, pages 2–2,
Berkeley, CA, USA, 2006. USENIX Association.

[13] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janaki-
raman, and Willy Zwaenepoel. Diagnosing performance overheads in
the xen virtual machine environment. In VEE ’05: Proceedings of
the 1st ACM/USENIX international conference on Virtual execution
environments, pages 13–23, New York, NY, USA, 2005. ACM.

[14] Andreas Stiller. Magazin für Computertechnik: Xen und die virtuelle
Zeit, March 2007. Seite 180.

[15] Ken Strandberg. Performance Impacts with Optimized Virtual Environ-
ments on Intel Virtualization Technology-based Platforms, 2006. Intel
Whitepaper.

[16] VMware, Inc. Performance Benchmarking Guidelines for VMware
Workstation 5.5, April 2006.

[17] VMware, Inc. Performance Tuning Best Practices for ESX Server3,
January 2007.

http://www.mnm-team.org
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

	I Motivation
	II Background and related work
	II-A Related work
	II-B Structure of this paper

	III Performance impact factors
	III-A Problem classes
	III-B Summary of requirements
	III-C Benchmarking the cloud

	IV Measurements
	IV-A Designing a performance measurement suite
	IV-A1 CPU
	IV-A2 Network

	IV-B Applying the test suite
	IV-B1 Concurrent CPU tests
	IV-B2 Concurrent network I/O
	IV-B3 Locality of communication peers


	V Discussion
	V-A Observations
	V-B Verdict

	VI Conclusions
	VI-A Outlook on future research

	Literatur
	References


